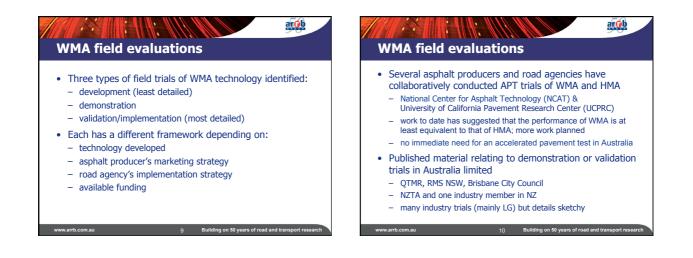

arob

15th AAPA International Flexible Pavements Conference Warm mix asphalt: background **Brishane** Increasing emphasis on need to reduce emissions 22-25 September 2013 and energy usage which contribute to global warming The Development of an - WMA a good option **Evaluation Protocol for Warm** • However, acceptance of WMA depends on: **Mix Asphalt Pavements** - confirmation of environmental benefits - evidence that field performance is at least equal to Prepared by: Kieran Sharp that of HMA Presented by: Erik Denneman - assurance regarding possible impact of use of WMA ARRB Group on current specifications Independent review sought by road agencies a:apa

arob

Review of field/validation trials

- About 120 references identified addressing field testing of WMA in USA, Canada, Europe, Asia and Australasia
- When criteria applied, only about 20% provided sufficient information to allow detailed review
- General trend suggested that performance of WMA was at least equivalent to HMA
- APT conducted in USA
- Limited information re usage in Australia (SRAs or industry)


Building on 50 years of road and transport re

WMA technologies About 50 registered WMA technologies in the USA (only three in 2005) and almost all States are conducting demonstration trials (only 15 States in 2007) WMA technologies associated with water-bearing, chemical and organic additives have received more attention than technologies using water-based mechanical systems Commercially-available WMA technologies identified and grouped into six categories depending on: additive content

- aggregate drying temperature
- maximum bitumen temperature
- requirements in terms of plant modifications

6 Building on 50 years of road and transport re

WMA technologies	WMA technologies
 Sequential aggregate coating and binder foaming low energy asphalt (LEA1) low emission asphalt (LEA2) WAM-Foam® 	 Chemical additive (surfactants / emulsions) CECABASE RT® Evotherm® / Evotherm 3G Rediset® WMX
Water-based binder foaming AQUABlack® Double Barrel® Green Terex®	Organic additives Asphaltan B Sasobit® LEADCAP®
 Ultrafoam GX® Binder foaming with water-bearing additive Advera® Aspha-Min® 	 Combined binder modifier and organic additives Thiopave® TLA-X®

arob

WMA field evaluations

- Concerns regarding the use of WMA
 - incomplete drying of aggregate (especially with absorptive limestones)
 - potential for increased moisture susceptibility when using WMA processes that involve the use of water
 - effects of chemical additives on long term performance of the binder
 - ability of WMA to provide enough radiant energy to heat the
 - reclaimed asphalt component in mixes containing RAP
 - general lack of information regarding long term performance of new asphalt mix designs (e.g. high RAP content or rubber asphalt)
 - Laboratory trials focussing on moisture susceptibility, rut
- resistance and durability
 warb.com.au 11 Building on 50 years of road and transport resear

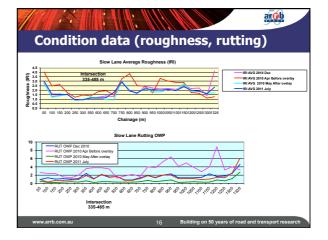
Validation project (Melbourne) Purpose: to compare performance of HMA and WMA pavements under real traffic conditions 2 additives and 2 foamed WMA 3 HMA, 4 WMA (0% RAP), 3 WMA (with up to 50% RAP) 3 major asphalt suppliers (3 aggregate sources) HMA: standard VicRoads mix

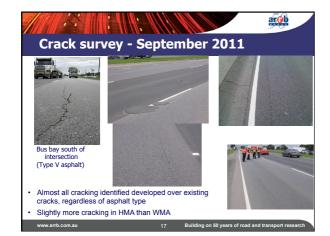
- VicRoads Metro North-West provided field site
 Old Hume Highway, Campbellfield
- Major effort by AAPA members and Austroads

Building on 50 years of road and transport researc

Distance (m) Lane 1 Lane 2 L 215 WMAA WMAA RAW R 210 WMAA RAW R R R 210 WMAA RAW R R R R 210 WMAA RAW R R R R R 210 WMAA RAW R
210 HMA HMA 210 WMA HMA 211 HMA HMA 215 HMA HMA Intersection Intersection Intersection
210 WMA WAMARAP W 215 HMA HAA HAA 5 HMARACCIGIN Interaction
215 HMA HMA H Intersection Intersection
Intersection Intersection
175 WMA WMA RAP W 160 HMA HMA W
160 HMA HMA W Slow lane E
Distance (m) Lane 1 Lane 2 La
North

	Site conditions
•	site approximately 1.3 km long
•	constructed along three lanes, each 3.5 m wide
•	length of sites varied from 160 m to 215 m
•	thin (40 mm thick) layer placed over existing pavement – existing site milled and patched prior to placement of mixes
•	sites laid out so WMA and HMA mixes subject to same testing conditions, including traffic levels
•	AADT ≈ 23,000, incl. ≈ 11% CVs (2010)
•	posted speed limit = 80 km/h


Building on 50 years of road and t


Validation project: data collection

- Cracking/patching data collected before construction
- Temperature data (ex auger, field) collected during construction
- Condition surveys (FWD, MLP) before/after construction and about every 6 months

 roughness, rutting, texture, strength
- Cracking surveys (cameras on MLP, manual surveys)
- Laboratory testing of samples manufactured during construction (industry)

ing on 50 years of road and tr

Validation project: laboratory testing				
 Industry participants cond line with draft Protocol observers from SRAs and Al 	ucted own laboratory testing in RRB present during testing			
Sampling from bulk sample (time of asphalt production, asphalt temperature, etc.)	Deformation resistance (wheel-tracking)			
Mixing compacting and conditioning – Gyropac, Marshall	Fatigue (repeated flexural bending) - AGPT/T233-2006			
Bulk density – 1 hour conditioning	Marshall stability and flow - AS2891.5-2004			
Modulus (indirect tensile) - AS2891.13.1-1995	Air voids and bulk density at design binder content – AS2891.8-2005			
Max density / voids free bulk density	Viscosity of recovered bitumen – ARRB Test Method No. 7 & AS2341.5			
Moisture content – VicRoads RC211.01	Normal production testing for VicRoads			
Moisture sensitivity / stripping potential – Tensile Strength Ratio / RTA T649	Field density of cores			
www.arrb.com.au	18 Building on 50 years of road and transport research			

Validation project: laboratory testing

- Protocol too demanding in terms of what can be practically achieved
- Need hierarchy of testing depending on type of trial, e.g.
 development (least detailed)
 - demonstration
 - validation/implementation (most detailed)
- Need to set minimum requirements and then 'desirable' requirements

Building on 50 years of road and tr

Summary Performance of WMA and HMA pavements at validation site in Melbourne excellent after 18 months almost all observed cracking reflective from original surface draft protocol in line with requirements for a 'validation' trial Laboratory testing conducted in line with draft Protocol Protocol too demanding in terms of what can be practically achieved need to set minimum requirements and 'desirable' requirements Monitor overseas projects (e.g. NCHRP, NCAT, UCPRC) and examine outputs in terms of possible application to Australia Premature to recommend a carbon calculation system for inclusion in Protocol

 need to develop data sets to allow local carbon dioxide emissions factors for the main components of road construction

www.arrb.com.au
20
Building on 50 years of road and transport research