# Economic, Social and **Environmental Impacts of Changing Road Maintenance** Spend: Scotland Case Study

PAVEMENT PRESERVATION & RECYCLING SUMMIT

Karl Johnston Head of Rail & Road Economics

PPRS PAR

Transport Scotland



# Contents

> Background: Scotland's Roads

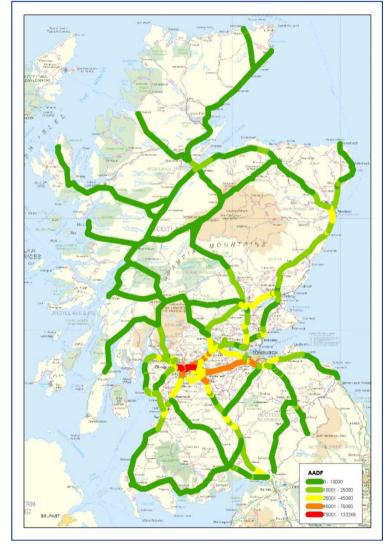
- > The context: National Roads Maintenance Review.
- > Overview of framework and steps in research.
- > Quantitative analysis measuring and monetising impacts.
- Qualitative assessment assessment of other impacts that cannot be or were not measured but may be of equal significance.
- > Conclusions.

# BACKGROUND 1

Scotland's Roads

# **Scotland – Key Facts**

DevolvedAdministration

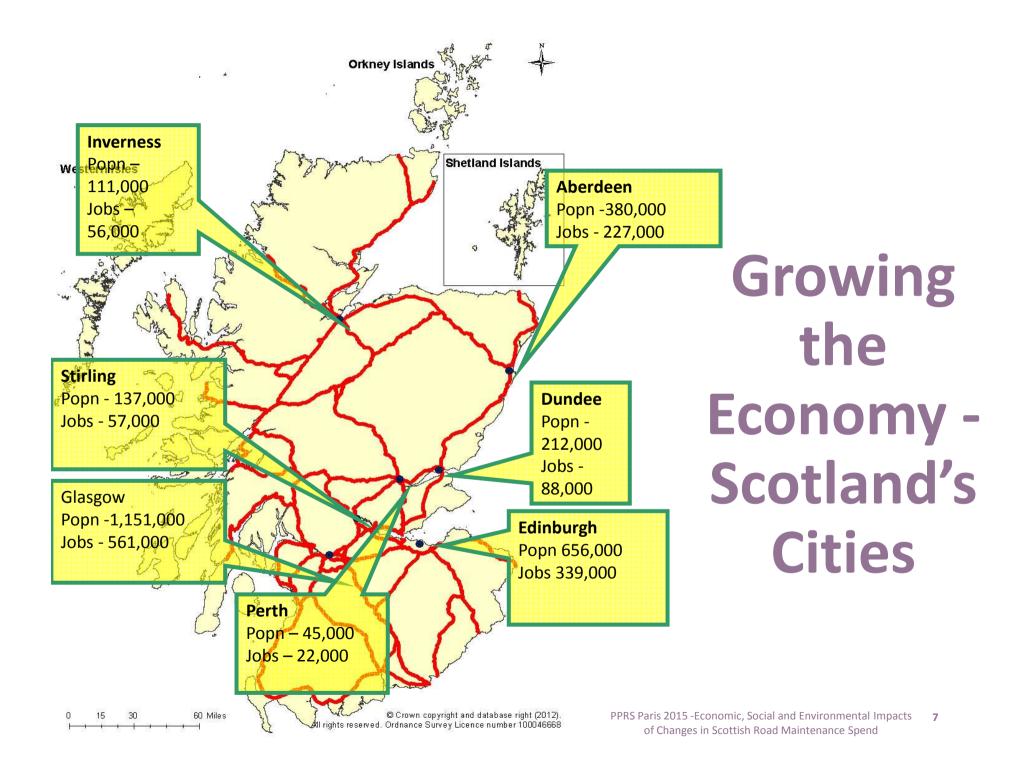

Scottish National
 Party Government
 Since 2007

Responsibilities include "Trunk" Road Network





#### PAVEMENT PRESERVATION & RECYCLING SUMMIT

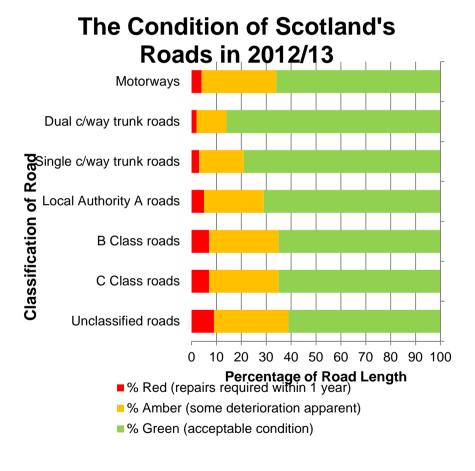



# **Trunk Road Network**

| Population         | 5,327,700                    |
|--------------------|------------------------------|
| • Area             | 78,772 sq km                 |
| • GVA              | £117,116 million             |
| > Trunk Road       | 3,405 km                     |
| • 6% of total Sco  | ottish road network          |
| • 39% of all traff | ic                           |
| • 63% of all HG    | / traffic                    |
| • 1,900 bridges    |                              |
| • 4,100 other str  | uctures                      |
| • Valued at +£18   | Bbn                          |
| Motorways          | 596 km (17%)                 |
| • A roads Dual     | 518 km (15%)                 |
| • A roads Single   | e 2315 km (65%)              |
| Local Roads        | 52,411 km                    |
| Freight lifted b   | y road in 2010 - 132m tonnes |

## Trunk Road Network & Key Sectors of the Economy






#### PAVEMENT PRESERVATION & RECYCLING SUMMIT

# **Road Challenges**



PPRS PARIS 2015 • FEBRUARY 22-25



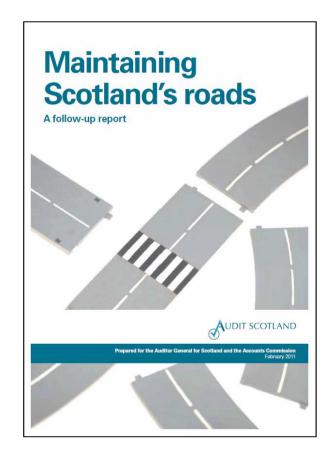


# **Keeping Scotland on the Move**



PRS Paris 2015 -Economic, Social and Environmental Impai of Changes in Scottish Road Maintenance Spend Maintaining;
 Optimising;
 Improving

■£214.2m 2014/15


# THE CONTEXT 2

National Roads Maintenance Review PPRS PARIS 2015 • FEBRUARY 22-25

PAVEMENT PRESERVATION & RECYCLING SUMMIT

# Introduction

- > 2011 Government National Road
  Maintenance review following Audit
  Scotland report
- How is the road network in Scotland managed and maintained?
- A workstream to look at: Wider Economic Issues, Costs and Benefits





# **Terms of Reference**

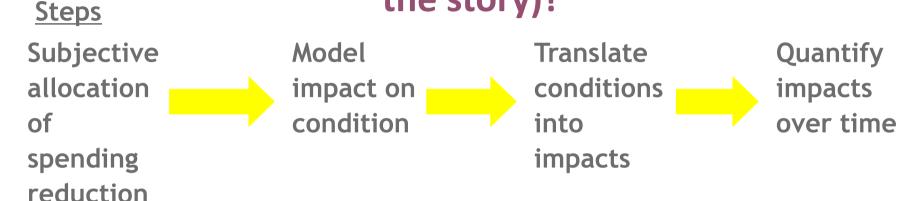
#### >Estimate the economic and social impacts of

#### reductions in trunk and local road maintenance

expenditure over a ten and twenty year time period.

OVERVIEW OF THE FRAMEWORK AND STEPS IN RESEARCH

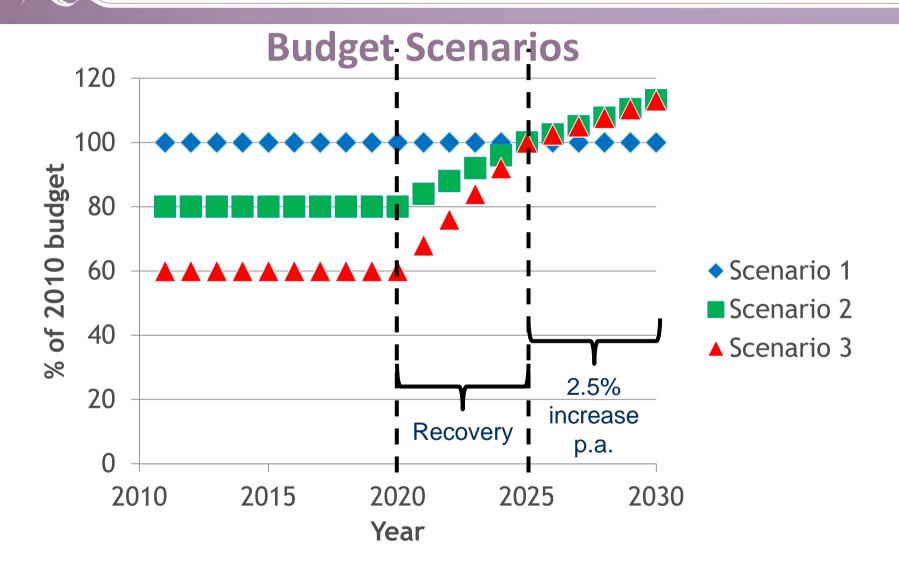
# How did we go about this?


- > Uses Scottish Transport Appraisal Guidance
  - Environment
  - Safety
  - Economy
  - Integration
  - Accessibility and Social Inclusion
- Quantitative and Qualitative assessments
- > Undertaken by TRL consultants



# QUANTITATIVE 4

Measuring and monetising impacts


# How did we go about quantifying this (half the story)?



- >Scenario 1: >Maintain 2010/11 spending
- Scenario 2: >20% reduction over 10 years, return to base level over next 5, real terms annual increase of 2.5% over following 5.
- Scenario 3: >40% reduction over 10 years, return to base level over next 5, real terms annual increase of 2.5% over following 5.

**PPRS** PARIS 2015 • FEBRUARY 22-25 PAVEMENT PRE

PAVEMENT PRESERVATION & RECYCLING SUMMIT



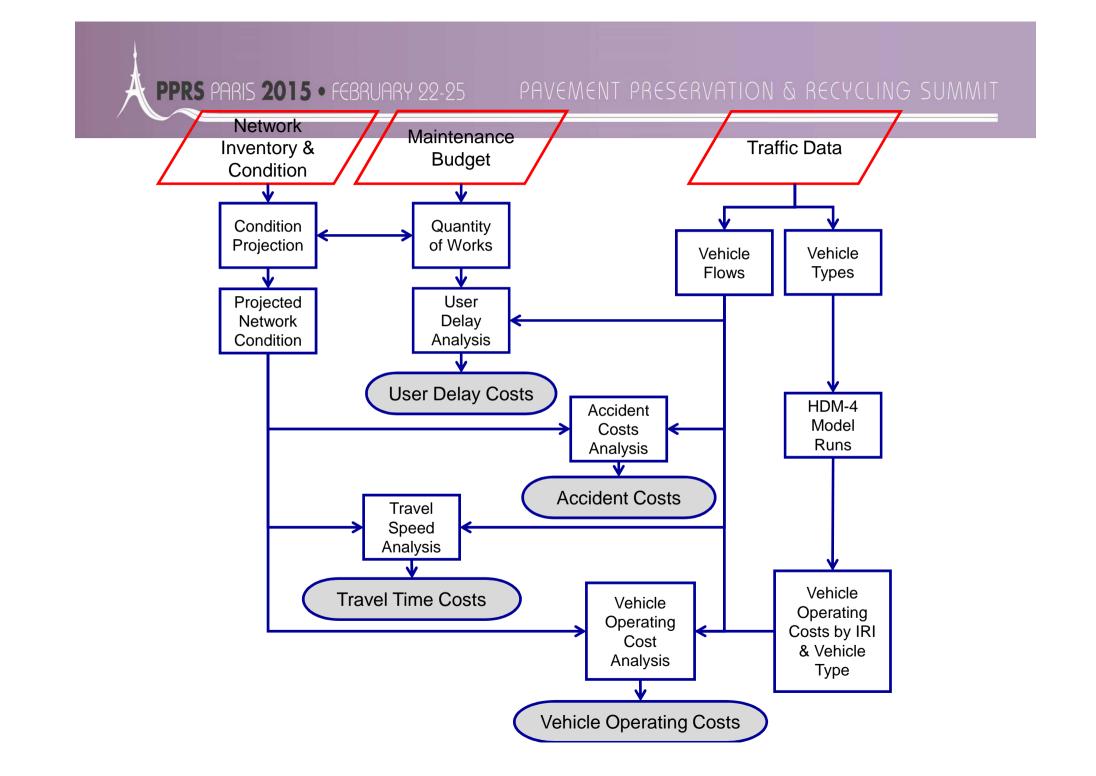


# **Model Assumptions**

- Scaling of Results for Local Roads
- Allocation of Budget to Activities
- > Even distribution of travel
- >Standard and Consistent Unit Rates
- No unplanned maintenance

#### Allocating reductions across budget lines: trunk roads

|                                                                   | Activity spend as percentage of<br>current budgeted activity spend |                                    |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------|--|--|--|
| Activity                                                          | Scenario 2<br>(Overall 20%<br>cut)                                 | Scenario 3<br>(Overall 40%<br>cut) |  |  |  |
| Inventory, inspection,<br>testing, routine and cyclic<br>activity | 87                                                                 | 72                                 |  |  |  |
| Miscellaneous                                                     | 88                                                                 | 71                                 |  |  |  |
| Structural maintenance –<br>pavements<br>(carriageways)           | 56                                                                 | 24                                 |  |  |  |
| Structural maintenance –<br>structures                            | 96                                                                 | 86                                 |  |  |  |
| Minor improvements                                                | 93                                                                 | 75                                 |  |  |  |
| Total overall budget<br>(%)                                       | 80                                                                 | <b>60</b> <sup>19</sup>            |  |  |  |

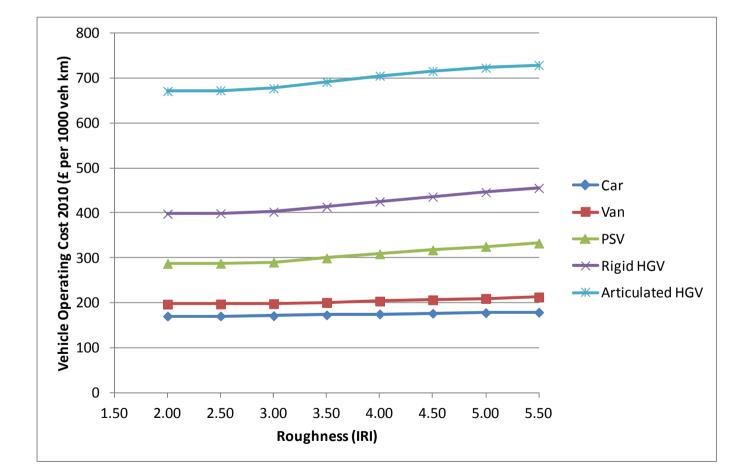

#### Modelling the impact on condition (Analyses undertaken by WDM Ltd)

- > Trunk roads:
  - Road Condition Indicator (RCI) to Residual Life conversion
  - Treatment interventions are based on RCI
  - Distribution of treatment remains constant for future years
- > Local roads:
  - SCANNER data (RCI used for condition)
  - Spending Review budgets
  - Condition reports
- > Valuation of network for trunk roads
- > Calculation of depreciation for local roads



# **Translating these into impacts**

- 1 Change in vehicle operating costs due to surface condition
- 2 Change in travel time costs due to surface condition
- 3 Change in accident costs due to surface condition
- 4 Change in delay costs at roadworks
- 5 Change in accident costs due to reduced lighting
- 6 Change in the carbon emissions, local air quality and noise
- 7 Change in the (road) asset value (not part of NPV)




## **Vehicle Operating Costs**

 If road conditions deteriorate, there is an increased cost of vehicle operation

more fuel

 more frequent repairs)





# **Travel Time Costs**

>Worsening in road conditions

Slowing of vehicle speeds

>Increase in the journey time.

# **User Delay Costs**

- Fewer planned disruptions (due to less maintenance work being carried out) result in reduced delays at roadworks and a decrease in journey time costs.
- >Unplanned maintenance NOT modelled
- Delay costs at roadworks were modelled using the Department for Transport QUADRO (Queues and Delays at Roadworks) delay cost model (Department for Transport, 2006).



## **Accident Costs**

Increased risk of accidents due to lower skid resistance.

Street lighting is reduced may increase traffic accidents.

# **Carbon Costs**

- Carbon Dioxide Emissions were Calculated based on the aggregation of:
  - Embodied CO<sub>2</sub> related to the materials used in the maintenance works carried out on the network
  - CO<sub>2</sub> emissions from vehicles delayed through roadwork sites.
  - CO<sub>2</sub> emissions due to changes in vehicle fuel consumption as a result of changes in pavement roughness.
- >CO<sub>2</sub> monetised using the central non-traded price of carbon as provided in STAG.

# **Quantitative analysis – results**

| Cumulative                                       | Tr                            | Trunk Roads   |            |                              | Local Roads |            |            | All Roads           |  |
|--------------------------------------------------|-------------------------------|---------------|------------|------------------------------|-------------|------------|------------|---------------------|--|
| discounted costs<br>(£m 2002 Prices)             | Scenario 1<br>(Base Case)     | Scenario<br>2 | Scenario 3 | Scenario 1<br>(Base<br>Case) | Scenario 2  | Scenario 3 | Scenario 2 | Scenario 3          |  |
| Financial Costs to                               | Financial Costs to Government |               |            |                              |             |            |            |                     |  |
| Maintenance<br>works                             | 2,152                         | -266          | -568       | 5,677                        | -688        | -1,459     | -954       | -2,027              |  |
| Impacts on Society                               | Impacts on Society            |               |            |                              |             |            |            |                     |  |
| Vehicle operating<br>costs                       | 73,223                        | +376          | +625       | 274,246                      | +1,485      | +2,966     | +1,861     | +3,591              |  |
| Travel time<br>(surface<br>condition<br>related) | 362                           | +57           | +94        | 1,572                        | +77         | +158       | +134       | +252                |  |
| Accidents (skid related)                         | 345                           | 0             | +21        | N/A                          | N/A         | N/A        | 0          | +21                 |  |
| Delays (through<br>roadworks)                    | 119                           | -25           | -38        | 1,480                        | -354        | -712       | -379       | -750                |  |
| Lighting<br>(accidents)                          | 128                           | +1            | +2         | 2,155                        | +18         | +37        | +19        | +39                 |  |
| C0 <sub>2</sub> Emissions                        | 5,765                         | -36           | -58        | 14,971                       | -14         | -16        | -50        | -74                 |  |
| Overall impact on society                        | 79,942                        | 373           | 646        | 294,424                      | 1,212       | 2,433      | 1,585      | 3,079               |  |
| <b>Economic analysis</b>                         |                               |               |            |                              |             |            |            |                     |  |
| Works costs reduction                            | Base Case                     | 266           | 568        | Base Case                    | 688         | 1,459      | 954        | 2,027               |  |
| Increase in user costs                           | Base Case                     | 373           | 647        | Base Case                    | 1,212       | 2,433      | 1,585      | 3,080               |  |
| Net Present<br>Value                             | Base Case                     | -107          | -79        | Base Case                    | -524        | -974       | -631       | 28<br><b>-1,053</b> |  |

# **Sensitivity Analysis**

- Shortening the analysis to 10 years to remove the effect of increases in maintenance budgets in the later years
- Higher than predicted inflationary rises in road maintenance costs. In recent years these have been up to 8% per annum
- Removing traffic growth and projected increases in fuel costs from the analysis

PPRS PARIS 2015 • FEBRUARY 22-25

PAVEMENT PRESERVATION & RECYCLING SUMMIT

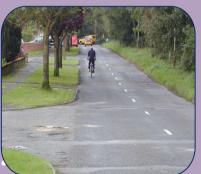
## Sensitivity analysis

|                                                                    | Trunk                   | roads                   | Local roads             |                         |  |
|--------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| Sensitivity tests                                                  | Scenario 2<br>(20% cut) | Scenario 3<br>(40% cut) | Scenario 2<br>(20% cut) | Scenario 3<br>(40% cut) |  |
| Base analysis (20 years, standard growth and indexing assumptions) | -107                    | -79                     | -524                    | -974                    |  |
| Reduced (10 year) time period analysis                             | 112                     | 263                     | -                       | -                       |  |
| Higher inflation rates on works costs                              | -62                     | 44                      | -                       | -                       |  |
| Vehicle operating costs: No traffic growth or fuel price increases | 307                     | 983                     | 332                     | 743                     |  |
| Scaling up methodology for local road sample to network effects    | -                       | -                       | -447                    | -806<br>30              |  |

# QUALITATIVE ASSESSMENT

Assessment of other impacts that cannot be or were not measured but may be of equal significance

# Second half of the story –assessment of impacts that have not been quantified


- > Biggest surprise. These impacts arguably as significant as the quantified impacts.
- > Some impossible or hard to quantify, some out of scope of the analysis.
- > Literature review:
  - 132 documents reviewed
  - 65 relevant
- > Workshop featuring guest expert presenters
- > "Based on the literature review, the user group most affected by a reduction in road maintenance would be pedestrians. Pedestrians would be affected in every aspect including noise and vibration, global air quality, visual amenity, cultural and landscape, physical fitness, accidents, security, and community accessibility." 32

# CONCLUSIONS

 Savings on road maintenance spend would be significantly outweighed by wider additional costs.



- A £1 reduction in road maintenance results in a £1.50 cost to the wider Scottish economy and society
- > Qualitative findings further reinforce this



# CONCLUSIONS

- > Impact is greater for local roads
- Most significant quantified impact increase in vehicle operating costs
- Public dissatisfaction with road conditions is likely to increase – not reflected in the quantitative analysis
- Investing in the maintenance of this significant capital asset delivers economic and social benefits to Scotland

# CONCLUSIONS

"Every £1 spent on road maintenance in Scotland provides a benefit of £1.50 to the Scottish economy.

"I therefore confirm today I will invest an additional £10 million in trunk road maintenance in 2013-14."

John Swinney Finance Minister

Budget Bill 2013-14 Stage 3 Scottish Parliament February 6, 2013 PPRS PARIS 2015 • FEBRUARY 22-25

PAVEMENT PRESERVATION & RECYCLING SUMMIT

# Links

#### Summary report:

<u>http://www.transportscotland.gov.uk/consultations/j235740-00.htm</u>

#### Impacts on trunk roads:

<u>http://www.transportscotland.gov.uk/consultations/j235739-00.htm</u>

Impacts on local roads and review of evidence:

http://www.transportscotland.gov.uk/consultations/j235737-00.htm

## National Roads Maintenance Review (Scotland) website

<u>http://www.transportscotland.gov.uk/road/maintenance/national-roads-maintenance-review</u>