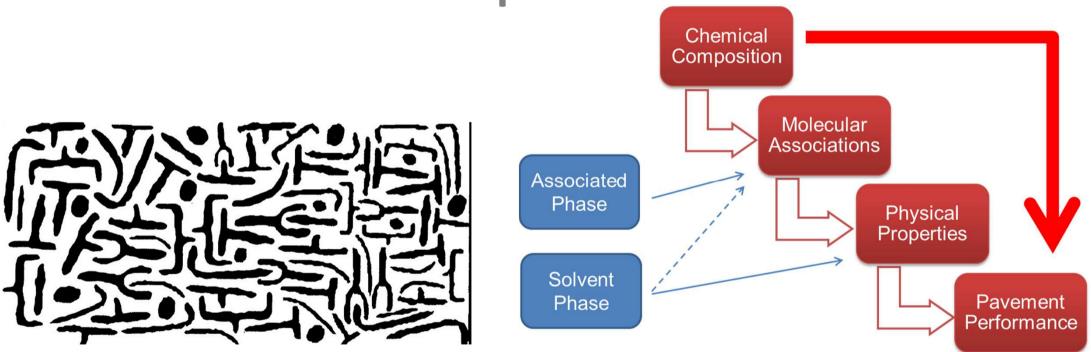
Asphalt (Bitumen) Chemistry and Emulsion Performance

PAVEMENT PRESERVATION & RECYCLING SUMMIT

Glynn and Irina Holleran

INTRODUCTION 1 Bitumen Chemistry

Outline


- > Bitumen Chemistry
- > Processing and Crudes in NZ
- > Imported Bitumen New Zealand

Bitumen Chemistry

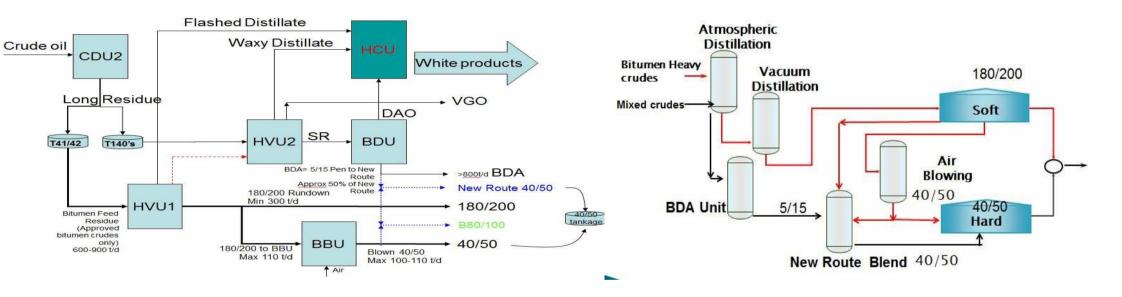
- > Complex
- > Codified by fractional- SARA testing
- > Based on colloidal and associative models
- Emulsions based on associative phase dispersion and presence of aromatic and naphthenic oils- the internal compatibility of the bitumen

PAVEMENT PRESERVATION & RECYCLING SUMMIT

Polar Dispersed model

PAVEMENT PRESERVATION & RECYCLING SUMMIT

Symbol Parameters	Definition	Description
p _a	The peptizability of associated species (asphaltenes)	The tendency of associated species to exist as a stable dispersion in the dispersing medium
p _o	The peptizing power of maltenes	The ability of a dispersing medium to disperse associated species
Р	Bitumen/Binder State of Peptization	A measure of the ability of the combination of a bitumen to form a stable dispersed system


Fractions

- > Saturates- part of maltenes
- > Oils- aromatic naphthenic- part of maltenes
- > Resins A- part of associated phase
- > Resins B (Asphaltenes) part of associated phase (higher level)

Fraction	Compounds					
Saturates	N and iso alkanes					
Aromatics	Alkylated cyclo-pentanes and cyclo- hexanes, aromatic rings- pi bonding and H -bonding					
Resins	Alkylated and cyclo-alkylated aromatic rings. Associated H- bonding					
Asphaltenes	Alkylated condensed aromatic rings – highly associated hydrogen and associative bonding					

AVEMENT PRESERVATION & RECYCLING SUMMIT

Refining NZ

Crudes: Arab Heavy, Ratawi for 180/200 GP come from many areas in Australasia, Asia and others

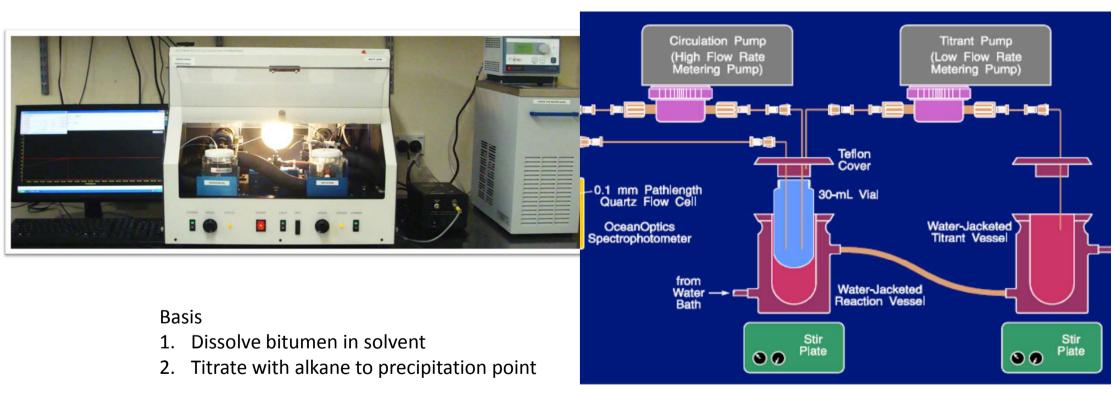
Imported bitumen

- Asia- Singapore, South Korea, Thailand mostly light Arab crudes – largely paraffinic
- > USA- range of local and Venezuelan crudes

PAVEMENT PRESERVATION & RECYCLING SUMMIT

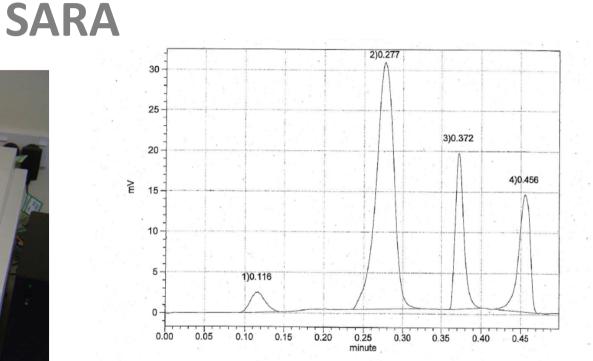
Main Interactions and Effect on Emulsion

- > Emulsions are created by development of a buffering double layer of emulsifier and particles of bitumen
- > Emulsifier relative solubility determines stability
- Associated phase must be well dispersed to form a stable emulsion
- > Saturates if elevated affect curing rate of emulsion
- Aromatic and naphthenic oils improve emulsion curing and stability



Potential Measurement

- Screening bitumen by composition can be looked at by looking at internal compatibility based on associated phase dispersion
- > Heithaus parameters
- > Ratio of associated to dispersing phase

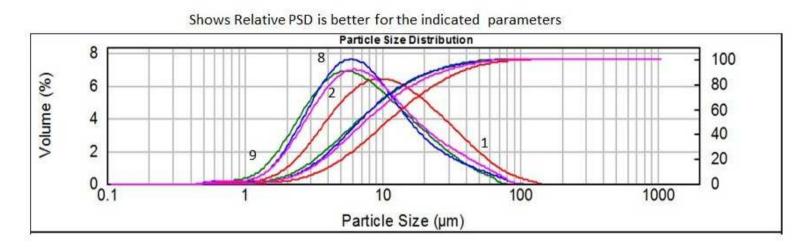

AVEMENT PRESERVATION & RECYCLING SUMMIT

AFT

AVEMENT PRESERVATION & RECYCLING SUMMIT

BASIS: Dissolve Bitumen in solvent Separate fractions base don polarity by successive "developing" with different solvents on silica rods Burn with H2 to determine relative levels

Results on 10 Bitumens

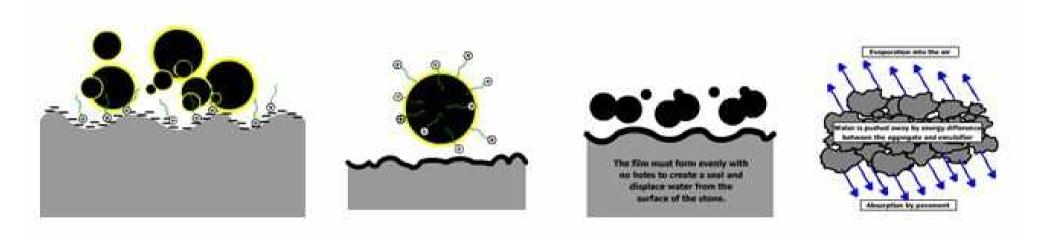

	latroscan								Heithaus			Emulsion
Bitumen	Saturates	Aromatics	Resins A	Resins B	Total Dispersing	Total Associative	Ass/disp	GI	p a	Po	Р	Stability
1	4.0	57.3	13.4	25.3	61.3	38.7	0.63	0.41	0.6900	0.7100	2.2000	issues
2	5.0	60.9	12.9	21.2	65.9	34.1	0.51	0.35	0.7295	0.9166	3.3880	ОК
3	4.6	59.2	12.0	24.2	63.8	36.3	0.56	0.40	0.7289	0.9182	3.3872	ОК
4	6.3	50. 3	18.0	25.4	56.6	43.4	0.77	0.46	0.7281	0.7826	2.8782	Issues
5	4.0	48.9	13.0	34.1	52.9	47.1	0.89	0.62	0.7131	0.8542	2.9774	issues
6	4.6	59.2	12.0	24.2	63.8	36.3	0.56	0.40	0.7138	1.0589	3.7004	ОК
7	4.0	48.9	13.0	34.1	52.9	47.1	0.90	0.62	0.612	0.7613	1.9567	issues
8	6.2	64.2	13.3	16.3	70.5	29.5	0.41	0.29	0.7800	0.8700	3.9000	ОК
9	4.7	58.6	15.2	21.6	63.3	36.7	0.57	0.36	0.7245	1.0193	3.7003	ОК
10	6.0	49.0	14.5	30.4	55.0	44.9	0.81	0.57	0.7100	0.7500	2.5000	Issues

Bitumen is selected form NZRC and imported Bitumen tested and can be a variety of crude sources and emulsion grades. Binders are selected on their rheology for withstanding traffic in a chip seal. The Stability is based on emulsion Formulations as currently used and the results are comparative.

Heithaus and latroscan Parameters and Effect on Emulsion Stability

- Stability appears compromised when the ratio of the associative to dispersing phase is greater than 0.6.
- > Stability is compromised when P the state of peptisation is <3.0</p>
- > The Po Peptising Power of the Maltenes should be > 0.87
- > The Pa- peptisability of the Resins B should be >0.80
- Gaestel Index : GI is a general indication as it does not take functionality into account

PAVEMENT PRESERVATION & RECYCLING SUMMIT



- Finer emulsions coalesce more evenly
- Narrower distributions break faster
- Coating is controlled by PSD and PS
- Control of PSD can be achieved by formulation and mill type and application
- Control of PSD can be achieved by selection of Bitumen Composition

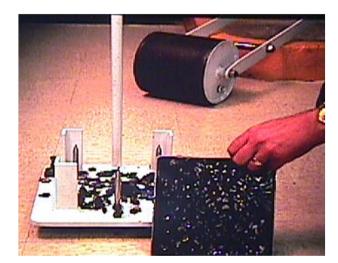
EMULSION BREAK AND 2 CURING

AVEMENT PRESERVATION & RECYCLING SUMMIT

Break and Cure

Destabilisation by Free Emulsifier Interaction

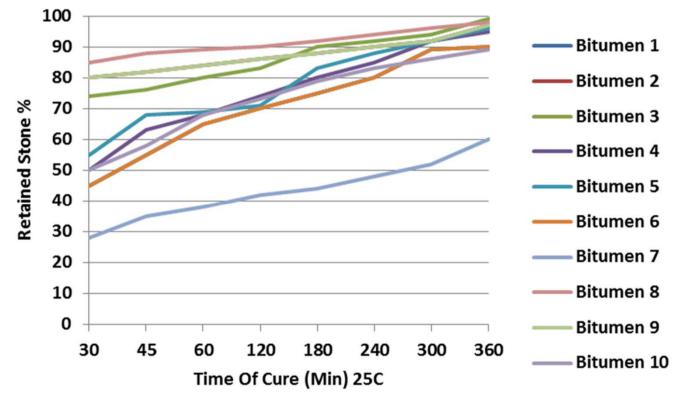
Destabilisation of Double Layer Film Formation Coalescence Curing- water Loss

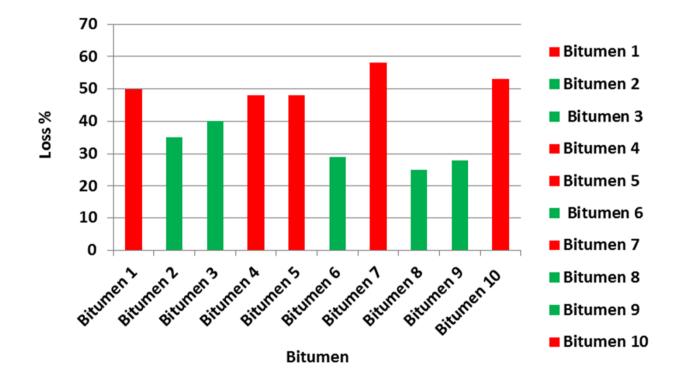

PAVEMENT PRESERVATION & RECYCLING SUMMIT

> Vialit Test

> Sweep Test

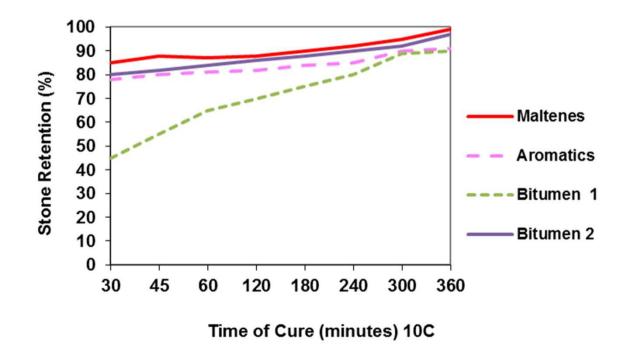
> Run Off


Measurement

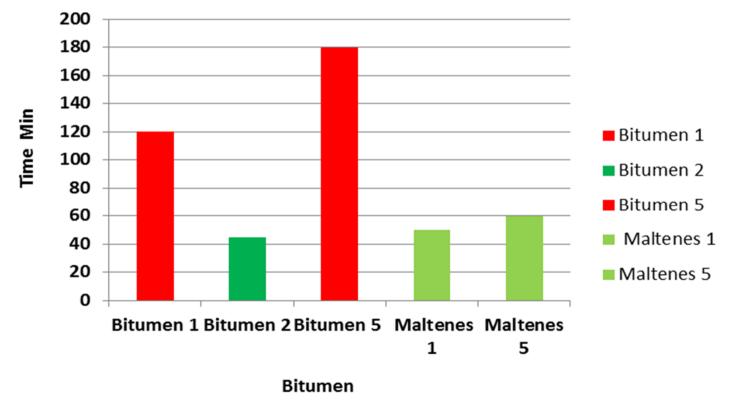

AVEMENT PRESERVATION & RECYCLING SUMMIT

Results

PAVEMENT PRESERVATION & RECYCLING SUMMIT


Results Sweep Testing

ADJUSTMENT OF 3 COMPOSITION


AVEMENT PRESERVATION & RECYCLING SUMMIT

Effect Of Adjustments

PAVEMENT PRESERVATION & RECYCLING SUMMIT

Run Off Test

CONCLUSIONS 4

Main Conclusions

- >Asphalt(Bitumen) Chemistry affects emulsion properties
- Bitumen can be screened for emulsability by use of internal compatibility testing and by comparison with SARA testing
- Bitumen chemistry could be thus be adjusted with additives and performance optimised by formulation