
The Green Chemistry in **Road Industry**

Graziella Durand – Colas COLAS

Eric Jorda – Ceca

Claude Giorgi – Eiffage TP

PAVEMENT PRESERVATION & RECYCLING SUMMIT

PPRS PARIS 2 0 1 5

Summary

Green Chemistry general concept

- Definition
- Implementation in Road Industry

An exemple from COLAS Innovation

- AFM emulsifier range : characteristics / advantages
- Recent jobsites references

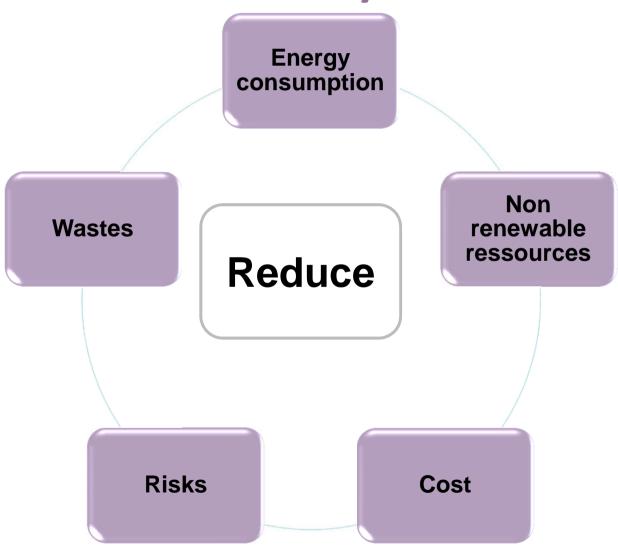
CECA/EIFFAGE Collaboration: A 100% biosourced CRS emulsifer

- Chemical Synthesis
- Jobsite references since 2005

Conclusions and perspectives

GREEN CHEMISTRY

The concept Implementation in Road Industry


Green Chemistry definition

- > 12 principles for a better sustainability in chemistry science
- > Paul T. Anastas & John C. Warner,

Green Chemistry, Theory and Practice Oxford University Press, New-York, 1998

Green Chemistry definition

Implementation in Road Industry

- > Binders based on vegetal ressources
- > Vegetal fluxoils as alternative to volatile mineral oils
 - -> no VOC emission
- Chemical additives efficient for lowering the temperature of mixes
- > Valorization of wastes / Recycling
- \rightarrow New range of emulsifiers \rightarrow 2 exemples

COLAS/CHEMORAN

AFM emulsifier range

Field experimentation : jobsite references

2

What is AFM?

- >83% bio-sourced
- > Neutral emulsifier
- Can be used directly in bitumen emulsion manufacture without any activation by acid or base.
- Therefore much safer to handle during bitumen emulsion manufacture
- Alternatively can also function as either a cationic or an anionic emulsifier

Advantages to the use of AFM

Labelling more consumer and environmentally friendly than the normal fattyamine / fattyamidoamine emulsifiers used traditionally in bitumen emulsions.

GH* S09 GHS07

> Non-hazardous for transport.

Chip seal / Tack coat

- Neutral pH emulsion
- > Perfect tackiness on concrete support
- Good behaviour in spite of wet environment

Reference job site: Tunnel Maurice Lemaire – East of France 34 000 m2

Dust palliative

- > 60% fluxed bitumen emulsion
- Very good emulsion stability

 destabilization avoided after dilution with 95% water
- No environmental risk because of neutral pH

Reference job site (Dust a Side):
GORO Mining site in New Caledonia
18 000 m2

Soil Stabilization

- > Anionic Slow Setting emulsion
- > Can be mixed with cement
- Used mainly for mixing with natural gravels or crushed aggregates for the stabilization of base coarses

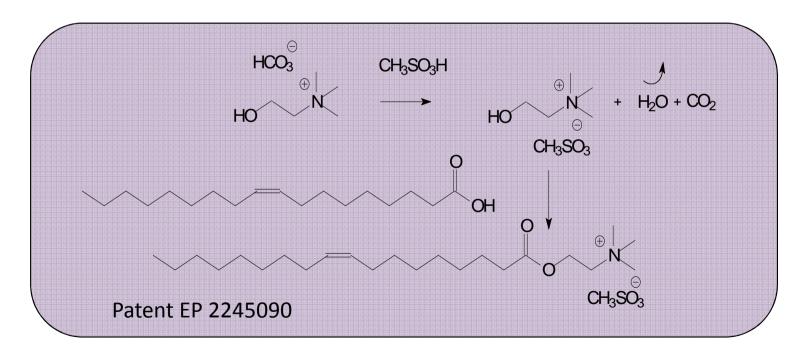
Reference job site:
A track in Kruger National Park (Colas South Africa)

Assessment of the experimentations

- > AFM vs "standard" surfactants
 - Standard emulsion manufacture process
 - Can replace standard surfactants for medium /slow setting emulsions
 - Safer during manufacturing and application

EIFFAGE TP / CECA

Biosourced emulsifier for surface dressing Field experimentation: jobsite references 3


Cationic "eco-friendly" bitumen emulsifier

- > Main characteristics:
 - Bio-sourced and renewable raw materials
 - Biodegradable
 - Low toxicity

Inspired by nature.. (Soybean, egg yolk...)

Cationic "eco-friendly" bitumen emulsifier

- > Sustainability without sacrificing economics
 - Based on vegetable oil and choline

■ Green chemistry: no solvent, low temperature...

Cationic "eco-friendly" bitumen emulsifier

› Biodegradable with low toxicity

- H315 : Causes skin irritation.
- H319 : Causes serious eye irritation.
- H335 : May cause respiratory irritation.

Biodegradability	720/
OECD 301D	73%
Toxicity to algae	2.6 mg/l
OECD 201	
Toxicity to fish	7.1 mg/l
OECD 203	
Toxicity to daphnia	1.2 mg/l
OECD 202	1.2 1118/1

First experimentation in 2009

- Located in France (rural area)
- Traffic cat. (T4): 25 to 50 trucks / day
- Surface = 16 000 m²

Double prechipped surface dressing

- Pure bitumen emulsion
- Bitumen content: 65%
- Layers emulsion content : 1,8 & 1,9 kg/m²
- Agregates (2/4 6/10 10/14) : ~8 l/m²

Last experimentations in 2014

- 2 worksites (rural area)
- Located in France
 - Traffic cat. (T3-): 50 to 85 trucks / day
 - Surface = 25 000 m²

Double surface dressing

- Pure bitumen emulsion
- Bitumen content: 65%
- Layers emulsion content: 1,4 & 1,1 kg/m²
- Aggregates (6/10 4/6): 7 & 5 l/m²

Assessment of the experimentations

- Positive experiencesFollowing during 5 years no defects observed
- > PX10016 vs « standard » surfactants
 - ✓ Same emulsions design & equivalent performances
 - ✓ Surfactant rate : slightly higher with PX10016
 - ✓ Cost effectiveness still in favor of traditional products
 - ✓ Scaled up productions of the product will minimize this difference

GENERAL 4 CONCLUSION

Ready for the Future

- Successfull Jobsites experimentations
- Safer products (environment hazard)
- Balance between economical parameters and future legislation on HSE, transportation etc.....

Thank You for your attention

