

Trajnost kolnika s hladno recikliranim nosivim slojevima i usporedba analiza tijekom životnog vijeka u odnosu na strukture sa samo vrućim asfaltom

Durability of pavements with cold recycled asphalt base layers and LCA-comparison to pure hot mix asphalt structures

Konrad Mollenhauer

cold recycled asphalt base layers

- Definition of materials
- Laboratory performance
- Quality condition of CR-Pavements
- Estimated durability
- Pavement design
- LCA-comparison
- Research Sources:
 - CRABforOERE (CEDR 2017 project) (2018-2020): (https://www.cedr.eu/peb-new-materials-and-techniques)
 - FE 07.0239 (2019-2021) (funded by German federal ministry of Transportation)

Cold Recycled asphalt Mixtures (CRM)

- Composed of:
 - > 75 % Reclaimed asphalt
 - Some natural aggregates
 - Bitumen emulsion
 - Mineral/hydraulic binder (e.g. cement)
 - Water
- Produced and layed at ambient temperature
- Material properties similar
 - to unbound layers during construction
 - to asphalt layers in long-term
 - To lean concrete at high cement contents

Range of CRM materials

Range of CRM materials

Assessment of existing pavements with CRM bases

- 15 sections in Europe (FR, GE, IT, SE, UK) were assessed
- Evaluation of applied mix design, pavement design, traffic and climatic loading and surface condition
- Common pavement design results

Range of CRM materials

CRM materials in analysed pavements

Surface condition assessment

1,0 2,0 3,0 4,0 4,5 very good bad

Country	Section	Con- Con asses		tion	Daily heavy traffic	Mean quality value		95 % quality value (worst section)	
				ment		rutting	cracking	rutting	cracking
GER	Pave	ements with	high þ1	.5	3900	1,9	1,0	2,2	1,2
GER		fic loading s		-7	60	1,3	1,0	2,0	1,0
GER	L go	ood conditi	on þi	.7 🔼	365	1,5	1,4	1,8	3 , 5
SWE	Rv95	2014	201	.9	380	2,1	1,4	2,3	2 , 8
SWE	Pavei	ment show	ed 01	.9	333	1,7	1,5	1,8	2 , 8
FR	R <mark> shrin</mark>	kage cracki	ng 01	.9	125		1,2		2,1
FR	R <mark> (in ea</mark>	arly life)	-		38				
ITA	SS38	2007	201	.9 _	1850		1,0		1,0
ITA	SS268	2016	201	.7	2115		1,0		1,0
ITA	_	ned for)1	.9	250		2,7		4,5
ITA	provi	sionally use)1	.9	11000		1,2		1,7
UK	A46	2006	201	.8	3664	1,6	1,4	1,6	1,8
UK	A21	2002	201	.8	11700	1,6	1,0	2,0	1,0

Assessment of national pavement design procedures for CRM and HMA

- Translation of national pavement design procedures in english
- Application for low and medium trafficked "model" pavements
- When CRM is applied, thickness surplus for base layer thickness is observed
- Surplus ranges between
 1,0 (SE, FR) via
 ~1,3 (IT, UK) to
 ~1,8 (GE)

Assessment of mechanical properties of CRM bases

- 10 sections including CRM base layer
 - Low high traffic
 - Age between 5 and 17 years
 - Different bitumen-cement ratio
- Coring samples and laboratoryprepared specimens
- Stiffness modulus tests
- Fatigue tests
- Application of mechanisticempirical pavement design

CRM materials in analysed pavements

CRM materials in analysed pavements

Evaluation of core samples

- Cyclix Indirect Tensile Stress tests (CIDT):
- Stiffness tests (EN 12697-26)
- Fatigue tests (EN 12697-24)

Stiffness modulus (cored samples)

Fatigue performance (cored samples)

Results of back-calculated MEPD

Sec-	ADT Kfz/d]	Thickness [cm]		Condition value (15)		FWD	MEPD
tion	(% HV)	CRM	HMA	Eveness	cracks	Tz	result [%]
1	50.000 (21 %)	25	29	1,8	2,3	4,5	4,2
2	50.000 (21 %)	25	31	1,9	2,9	3,1	<<1
3	26.000 (15 %)	20	18	1,8	1,0	4,9	<<1
4	4.176 (6,4%)	18	18	1,9	1,0	6,1	1,9
5	2.676 (24 %)	18	11,5			3,9	<<1
6	2.307 (7 %)	18	12	2,3	1,0	3,3	<<1
7	2.096 (10 %)	12	4				541
8	1.659 (5 %)	16	4	1,2	1,9	2,3	<<1
9	1.220 (2,9 %)	20	14	1,8	1,4	4,1	<<1
10	605 (2 , 5 %)	18	18	1,8	1,0	5,5	<<1

CRM materials in analysed pavements

CRM materials, prepared in Laboratory

Laboratory-assessment of CRM performance

- Preparation of CRM mixtures with common bitumen emulsion and mix granulate with varied binder contents:
 - RA-content: 70 %
 - Bitumen emulsion: 3,5 % (resulting added bitumen): 2,1 %
 - Hydraulic road binder: 2,0 % and 4,0 %
- Compaction of slab specimens and coring of cylindrical specimens
- Curing (20 °C, 50 % r.h., 28 and 180 days)
- Stiffness and fatigue testing
- Application of MEPD

Stiffness and Fatigue characteristics of CRM samples

Proposed Pavement design for CRM

- Results of CRABforOERE-Project:
 - Pavements with CRM bases have similar durability properties as "pure" HMA bases
 - Empirical pavement designs result in design thickness factor of 1,5 in maximum
- Results of FE 04.0239:
 - CRM layers with low cement content show asphalt-like behaviour, however less temperaturedependency than HMA
 - Whem HMA-MEPDG is applied on CRM pavements, design thickness factor of between
 1,14 and 1,6 is derived

Base layer thickness x [cm] for HMA and CRM

ADT (heavy veh.)	900	90	30	5
with sub-base	18 23 +28 %	14 19 +38%	12 17 +44 %	10 16 +60 %
without sub-base	30 34 +14 %	26 30 +17%	26 30 +17%	22 26 +19 %

Life-cycle assessment (Cradle-to-gate) CRM vs. HMA

 Comparison of applied CRAB pavement with "standard" HMA pavement for 2 road sections

Germany, 2006

San Marino, 2020

Standard: HMA (base layer)

- 96,5 % aggregates
- 3,5 % bitumen

CRM:

- 92 % Reclaimed Asphalt
- 4 % bitumen (emulsion)
- 4 % cement

Standard: HMA (base layer)

- 94,5 % aggregates
- 5,5 % bitumen

CRM:

- 88,8 % Reclaimed Asphalt
- 5 % aggregates
- 4,5 % bitumen (emulsion)
- 2 % cement

Change in environmental impact by using CRM instead of HMA base layer

Combining CO₂-reduction to pavement design

- Compared to HMA production, CRM inhibits less than 60 % of CO₂eq.
- However, pavement designs indicate, that higher layer thickness is required and results in more material consumption
- Resulting LC-benefit by using CRM will be reached, when thickness surplus is less than +67 %
 (Thickness factor less than 1,6)
- Pavement designs indicate, that lower thickness surplus is required

Thank you very much for your Attention!

Acknowledgements

- CRABforOERE-Team: Marius Winter, Davide Lo Presti, Gaspare Giancontieri, Henrik Bjurström, Björn Kalman, Vincent Gaudefroy, Pierre Hornych, Andrea Graziani, Chiara Mignini, Gabriella Buttitta, Konstantinos Mantalovas
- FE 07.0239-Team: Marius Winter, Martin Radenberg, Matthias Staschkiewicz, Ludger Vienenkötter

The presented results are based on research results funded by CEDR and German Federal Ministry of Transportation