

9. International conference **ASPHALT PAVEMENTS 2025** 08. & 09. 05. 2025., Opatija (Croatia), Centar Gervais

Exploring the Performance Spectrum of Bitumen Stabilised Materials' variables: RA Recycled Asphalt, Active Filler and Binder Content

Prepared by: Presented by:

Ross Cotterrell Kim Jenkins, Prof

Introduction

- 1. Environmental Considerations for BSM
- 2. Pavement Structures and Energy
- 3. Tests
- 4. Influence of Active Filler
- 5. Influence of Bitumen Content
- 6. Deviations from expected behaviour
- 7. Conclusions
- 8. Recommendations
- 9. Questions

CO2 Emissions (Grams/vehicle-km) = a0 + a1 * IRI + a2 * IRI/2 + a3 * IRI/3													
	Four-											Average	
	Motor_	Small	Medium	Delivery	Wheel	Light	Medium	Heavy	Articulated	Small	Medium	Large	Vehicle
Coefficient	cycle	Car	Car	Vehicle	Drive	Truck	Truck	Truck	Truck	Bus	Bus	Bus	Fleet
a0	49.73	180.66	211.62	231.06	229.45	419.60	723.46	1344.48	1817.77	272.19	433.73	847.04	337.32
a1	0.7842	-2.4571	-3.4518	-2.4618	-0.8010	0.8989	4.0325	10.5465	8.4855	0.4445	1.9410	0.5878	-0.8268
a2	-0.0655	0.4056	0.5385	0.3792	0.2293	0.1540	-0.1269	-0.8162	-0.0601	0.0920	-0.0143	0.3723	0.2681
a3	0.0020	-0.0106	-0.0141	-0.0093	-0.0053	-0.0038	0.0051	0.0273	0.0041	-0.0017	0.0012	-0.0095	-0.0064

Technical Recycling Selection

Cold Recycling

In Place

In Plant

- Production W380CR >750t/h
- Treat consistent material
- No material transport costs
- Cut-plan necessary
- Joints between wheelpaths

- ▶ Production >200t/h
- Blends several materials
- Cross-mixing (3D)
- ► No grader (paver laid)
- No joints in lanes
- Allows multi-layer treatment

Cold Recycling in 100% RAP Down Cutting

Advanced Mix Design – Triaxial Test

Test at 25°C

Confining Pressure 0 kPa 50 kPa 100 kPa 200kPa

Experimental Design

Mix Design: Cold Recycling Improvements

Padfoot Dynamic Roller

Drop Weight Hammer

ITS versus Compaction Method: 100% RA in BSM-foam **correct**

⁽N.Malapane, 2022)

Influence of Active Filler: Evaluations

• Similar overall trends:

- Shear properties
- Resilient Modulus
- ITS
- Those trends were more pronounced with cement than lime.
- Cement generally produced
 stronger and stiffer mixes,
 increasing the Resilient Modulus

Active Filler Addition

Influence of Active Filler: Dissipated Energy (DE)

Cement

- Low σ_3 : Increase cement % = increase in DE (dissipated energy)
- High σ_3 : Increase cement % = decrease in DE
- DE results show more brittleness (vulnerable to cracking)

600.0 500.0 3 \$ 400.0 300.0 200.0 7 100.0 0.0 0 kPa 50 kPz 100 kPa 200 kPa = 1% 52.7 277.9 33.6 410.3 m 29 27.6 39.5 135.7 420.6 **3%** 29.8 52.2 243.6 476.4 45 41.1 60.8 98.2 470.1 Confinement

Average Dissipated Energy vs Lime Content

Lime

- Low σ₃: Increase lime % = small increase in DE (dissipated energy)
- High σ_3 : Increase lime % = increase in DE
- DE results show more flexibility (less brittleness)

Influence of Active Filler: Resilient Modulus and ITS

Cement

- Increase in cement % = increase in Resilient Modulus.
- Increase in cement % = increase in ITS (Wet and Dry).

Resilient Modulus vs Lime Content (40% DSR) 3000 Resilient Modulus (MPa) 2000 1000 0 1% 2% 3% 4% 200 kPa 2220 1678 2008 2543 ■ 100 kPa 1707 1470 1666 2130 50 kPa 1315 1290 1385 1794 Lime Content

- Increase in lime %= increase in Resilient Modulus.
- Increase in lime % = increase in ITS (Wet and Dry).

Lime

Influence of Bitumen: Conclusions

- Similar overall trends in:
 - Shear properties
 - Resilient modulus
 - ITS
- Those trends were more pronounced with cement than lime, except for resilient modulus.
- Dissipated energy results showed similar trends

200% 110% Percentage of Base Cohesion (%) 180% 100% 160% 90% 80% 140% 120% 70% 100% 60% 80% 50% 40% 60% centage 30% 40% 20% 20% Per 10% 0% 2.4% 2.9% 3.4% 152% 114% Cement Cohesion 100% Lime Cohesion 100% 119% 95% - Cement Friction 100% 79% 90% 94% -Lime Friction 100% 98%

Bitumen Content Results Trend (1% Active Filler)

Bitumen Addition

Conclusions

Increasing cement content in BSM:

- Increase in strength and stiffness.
- Varied influence on shear properties.
- Increase in brittleness.

• Increasing lime content in BSM:

- Increase in strength and stiffness (less significant than cement).
- Varied influence on shear properties.
- No increase in brittleness.

• Increasing bitumen content:

- Similar regardless of type of active filler.
- Strength and stiffness peak at bitumen = 2.9%
- Cohesion peak and friction angle trough at bitumen = 2.9%.
- Dissipated energy decreases with increasing bitumen content (at high σ_{3}), but no sign of brittle behaviour.
- The primary purpose of **bitumen** in BSM mix is for **durability** i.e. moisture resistance, and not strength and stiffness.

Questions?