

HRVATSKO ASFALTERSKO DRUŠTVO

CROATIAN ASPHALT ASSOCIATION

OVERVIEW OF THE LATEST EUROBITUME LCA STUDY FOR BITUMEN

UVID U NAJNOVIJU EUROBITUME LCA STUDIJU ZA BITUMEN

MARKUS SPIEGL, OMV

9. MEĐUNARODNA KONFERENCIJA ASFALTNI KOLNICI 2025 9. INTERNATIONAL CONFERENCE ASPHALT PAVEMENTS 2025 OPATIJA 08. – 09. 05. 2025.

Eurobitume LCA Report 4.0 summary of the webinar content from 12th and 26th March 2025

Presented as a member on behalf of Eurobitume

January 2025 (31)

Core Members (18)

International Members (1)

Société Multinationale de Bitumes

Associate Members (11)

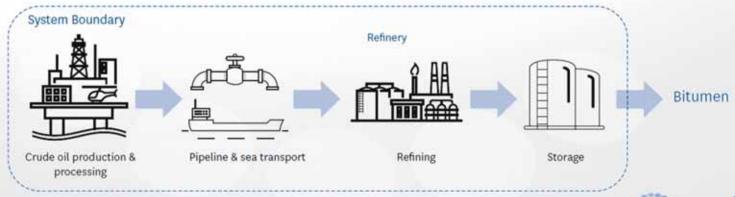
Academia (1)

Background

- Update the reference year of the data
 - 1st LCI published in 1999
 - 2nd version published in 2012
 - 3rd version in 2020 (V3.0) / 2022 (V3.1)
- Provide appropriate responses to the main questions pointed out in the critical review of the previous study (LCI 3.0/3.1)
 - Choice of database for raw data
 - Lack of primary data

4th Life Cycle Assessment study (V4.0 - 2025)

Framework


- Carried out by recognised sustainability consulting company (Sphera)
 - In accordance with the ISO 14040:2006 and ISO 14044:2006 standards
- External critical review (Solinnen)
 - in accordance with ISO 14071:2024 by an expert company

Scope of the study

- Reference unit: 1 t of bitumen / 1 t of oxidised bitumen
- Representative of bitumen production (Eurobitume members)
 in the EU & UK
 - Data collection from 17 refineries in Europe (8 companies) and estimated to represent
 ~75 % of the bitumen production of Eurobitume members
- System boundaries: cradle-to-gate, including crude oil production, crude transport and refining and storage at the refinery

LCA 4.0 content

Life Cycle Inventory (LCI)

- Quantification of resources and emissions associated with the bitumen production
- Complete dataset in ILCD format: can be used by LCA practitioners to conduct life cycle studies on products containing bitumen

Life Cycle Impact Assessment (LCIA)

- Impact categories in compliance with the standard EN 15804+A2 (38 indicators)
 - incl. Global Warming Potential over a 100-year period (GWP₁₀₀)
 - Acidification
 - Eutrophication
 - Water use
 - Waste
 - Etc.

Cradle-to-gate LCI results of bitumen (in kg/t of bitumen)

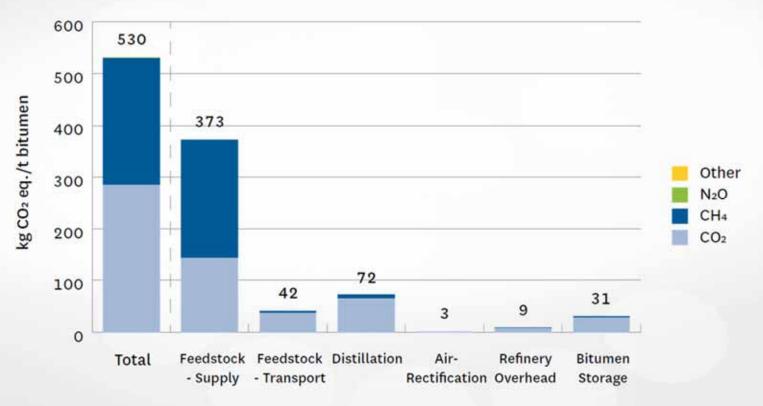
Туре	Flow	Bitumen (EN 12591) [kg/t]	Oxidised Bitumen [kg/t]
Resources	Water consumption	658	739
	Crude oil	994	1003
	Hard coal	2,21	2,77
	Lignite	2,19	3,05
	Natural gas	79,4	101,6
	Uranium	2,3E-04	3,5E-04
Emissions to air	CO ₂	284	360
	CO ₂ (biotic)	5,91	8,34
	CH ₄	8.09	8,42
	CH ₄ (biotic)	8,0E-02	8,7E-02
	N ₂ O	8.5E-03	1,0E-02
	NO.	1,13	1,16
	SOI	0,67	0,79
	NMVOC	1,65	1,74
	co	0,34	0,38
	PM _{2.9-16}	8,2E-02	8,7E-02
	PM _{2.6}	1,1E-02	1,3E-02
	Heavy metals	2,7E-04	3,1E-04
Emissions to fresh water	Ammonia	9,9E-04	1,1E-03
	Nitrate	1,3E-02	1,5E-02
	Phosphate	7,4E-04	9,1E-04
	Heavy metals	1.5E-02	1,7E-02
Emissions to sea water	Ammonia	6,6E-07	1,4E-06
	Nitrate	4,6E-04	5.0E-04
	Phosphate	9,1E-05	1.6E-04
	Heavy metals	2.6E-03	2.7E-03

LCA 4.0 content

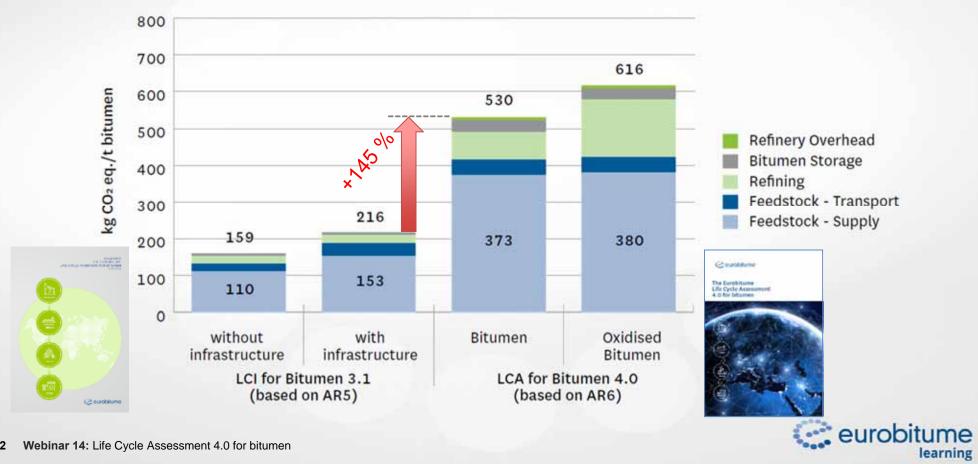
- Life Cycle Inventory (LCI) of bitumen data set
 - Quantification of resources and emissions associated with the bitumen production
 - Complete dataset in ILCD format: can be used by LCA practitioners to conduct life cycle studies on products containing bitumen
- Life Cycle Impact Assessment (LCIA)
 - Impact categories in compliance with the standard EN 15804+A2 (38 indicators)
 - incl. Global Warming Potential over a 100-year period (GWP₁₀₀)
 - Acidification
 - Eutrophication
 - Water use
 - Waste
 - Etc.

Core indicators (EN 15804+A2)

Impact category	Indicator	Unit (expressed per functional unit or per declared unit)
Climate change – tatal #	Giobal Warming Potential total (GWP-total)	kg CO ₂ eq.
Climate change - front	Global Warming Petrottal fossil fuels (GWP-fossil)	kECO2 eq.
Cliniate change - biogenic	Global Wartning Potential Imagenia (GWP-Imagenic)	kg CO ₂ eq.
Climate change - land use and land use change li	Global Warming Potential land use and Lord use change (GWP-balue)	kg CO ₂ eq.
Orone Depletins	Deportion potential of the stratospheric orone layer (ODP)	kg CFC 11 eq.
Aridification	Acidification potential, Accumulated Exceedance (AP)	mod H1 req.
Entrophication aquatic freshwater	Entrophication potential, fraction of matricula reaching freshwater and compartment (EP-freshwater)	kg PO ₄ eq.
Eutrophication aquatic marter	Extraphication potential, fraction of matricula reaching marine end compartment (EP-marine)	lig N es
Extrophication terrestrial	Entropiduation potential, Accumulated Encertains (EP-terrestrial)	mol N. eq.
Photochemical ozone formation	Fermation potential of tropospheric mone (POCP):	kg NMVOC eq.
Depletion of abiotic resources - minerals and metals ^c d	Ablotic depletion potential for une- foscil resources (ADP- unserabilmentals)	lig 5h eq.
Depletion of abiotic resources - funtil fuels ^c	Abiotic depletion for fossil resources potential (ADP-fossil)	ML set colorific value
Water use	Water (mer) deprivation potential, deprivation-weighted water consumption (WIP)	m ³ world eq. deprired


GWP₁₀₀ indicator (AR6*) – Results

^{* 6}th Assessment Report (IPCC, 2022)

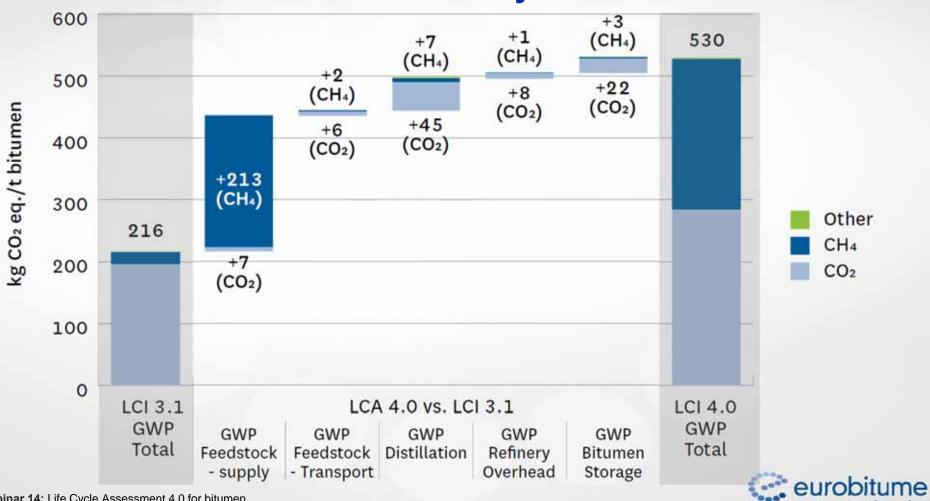

Individual GHGs for bitumen GWP₁₀₀ (AR6*) per process stage

^{* 6}th Assessment Report (IPCC, 2022)

GWP₁₀₀ LCI 3.1 vs. LCA 4.0

LCA Methodology – V3.1 vs. V4.0

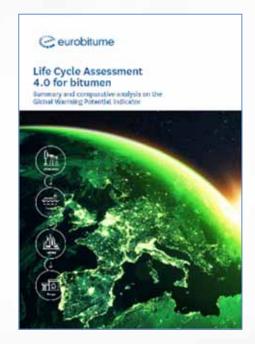
	LCI 3.1 (2020 + 2022 update)	LCA 4.0 (2025)
Crude oil database	 Energy consumption / emission: IOGP per region/continent and combined with Ecoinvent background LCI data 5-year rolling average for crude oil extraction (2015-2019) 	 Sphera's Managed LCA Content (MLC) 2024.1 database / Averaging by country of origin Venting, flaring and fugitives based on the IEA "Global Methane Tracker" tool
Crude oil basket	 Crude mix used for bitumen production estimated by Eurobitume members (reference year 2019) 	 Refinery specific crude supply data by country of origin collected and weighted by individual refinery bitumen production Feedstock supply referring to a 3-year average (2021-2023)


LCA Methodology - V3.1 vs. V4.0

	LCI 3.1 (2020 + 2022 update)	LCA 4.0 (2025)
Allocation method at the refinery	 Sensible heat method: energy to heat the bitumen fraction from the crude oil to the run-down temperature Refinery energy grid based on primary data from Eurobitume members 	Allocation by energy for the distillation steps based on the primary data of 17 refineries
Bitumen Storage	 Energy consumption was calculated based on literature and defined storage parameters 	Based on primary data

learning

LCI 3.1 vs. LCA 4.0 – Synthesis



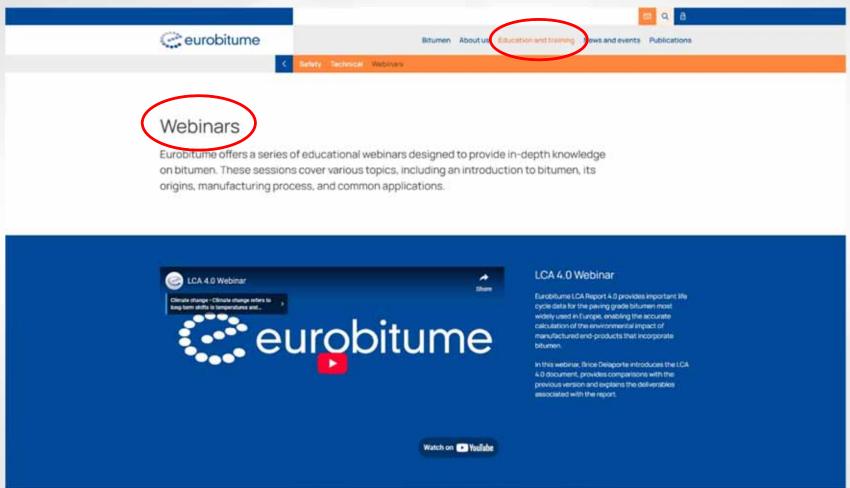
Deliverables available on the Eurobitume website

LCA report including

- LCI (Life Cycle inventory)
- LCIA (Life Cycle Impact Assessment)
- Critical review (external verification)



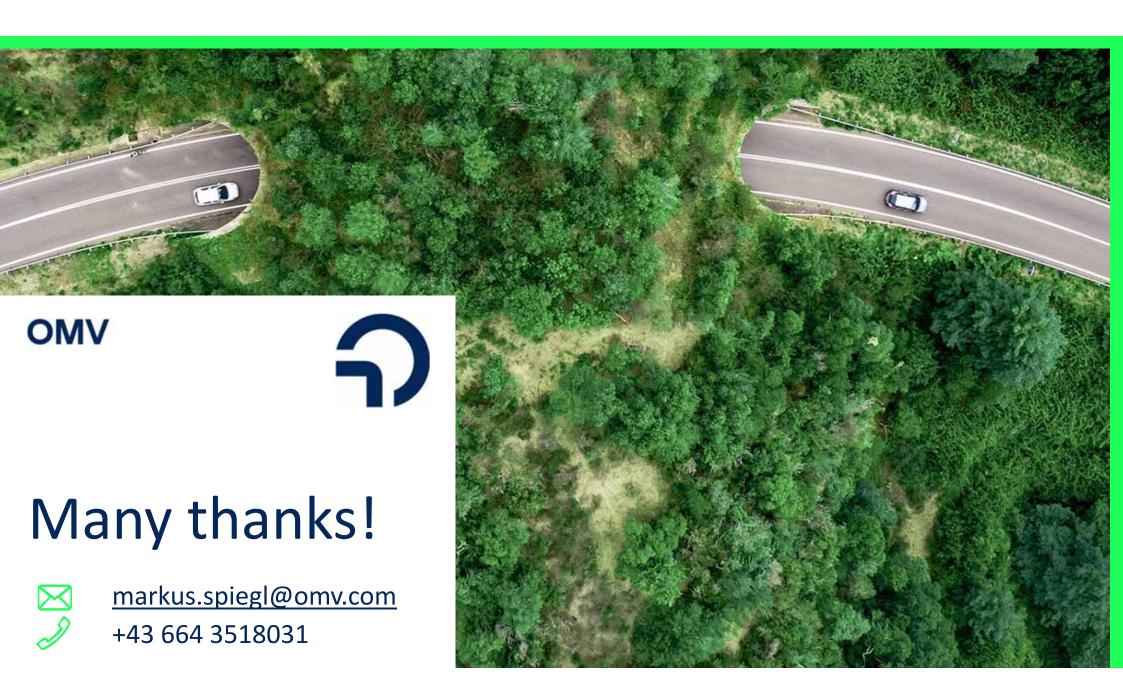
Summary and comparative analysis with LCI 3.1


Focused on the Global Warming Potential indicator (GWP₁₀₀)

LCI in the ILCD format
Frequently Asked Questions

EB Website

QUESTIONS AND MORE INFORMATION


PLEASE CONTACT:

BRICE DELAPORTE (EB SUSTAINABILITY LEAD)

Email: Brice.Delaporte@eurobitume.eu

Disclaimer

า

© 2025 OMV Downstream GmbH, all rights reserved, no reproduction without our explicit consent.

This presentation and its contents are property of OMV Downstream GmbH and are inter alia, protected by copyright law. Complete or partial passing on to third parties as well as copying, reproduction, publication or any other use by third parties is not permitted.

This presentation is prepared for information purposes and to outline our expression of interest. Nothing in this presentation shall be construed to create any legally binding obligations or an obligation to execute any agreement or otherwise enter into, complete or affect any transaction in relation to this presentation.

No opinion expressed in this presentation and no information set out in this presentation constitute an advice or a confirmation. OMV Downstream GmbH is not liable for any use of the information set out in this presentation and any use of the information set out in this presentation is at the sole risk of its user.

All figures and information in this presentation are strictly confidential, they are by no means binding and thus indicative only.