AAPA's 14th International Flexible Pavements Conference

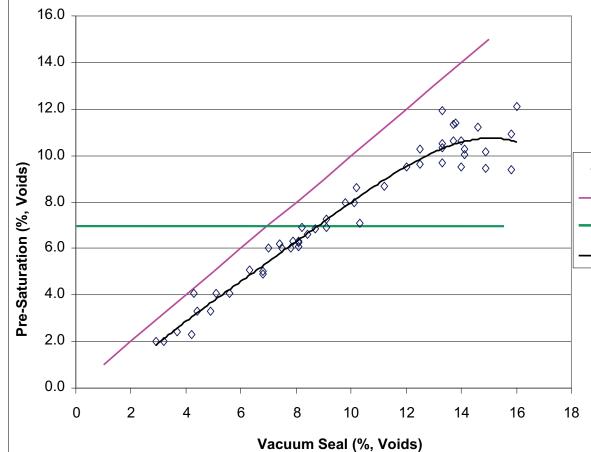
Sydney 25–28 September 2011

Topic: BULK DENSITY INVESTIGATION IN SOUTH AUSTRALIA

PRESENTER: JOHNNY TRAN Position: Asphalt Engineer Organisation: South Australian Department for Transport, Energy & Infrastructure (DTEI)

INTRODUCTION

> Three bulk density testing methods:


- > Presaturation (Saturated Surface Dry)
- > Vacuum Seal (Machine & Plastic Bag)
- Mensuration (By Dimensions)
- > Pre-saturation method inaccurate for Stone Mastic Asphalt (SMA) pats/cores.
- > Approx 390 samples of DG, SMA & OG were prepared in DTEI lab and some from contractors.
- > Aim to introduce the vacuum sealing test into standard laboratory practice.

AIR VOIDS – ISSUES of PRESATURATION Coarse Mix AC20 (AC28 Interstates)

- Asphalt samples compacted as various gyratory cycles to obtains range of air voids.
- Indication of diverging apart of 2 methods at approx. 7% Presaturation air void.

Dense Mix Production Samples – Pre-Saturation Vs. Vacuum Seal

LITERATURE REVIEW

>ASTM 2726-04 Absorption Check: 3 Masses (m₁, m₂ &

 m_3) as obtained from Pre-saturation test.

 $ASTM2726 - 04: Water _Absorbed _by _Sample = \frac{(m_3 - m_1)}{(m_3 - m_2)} * 100$

If water absorbed by Pats/Cores > 2% for Asphalt Mixes (ASTM D2726-04) => Vacuum Sealing Method.

Water absorbed by Pats/Cores > 0.4% for SMA and

Coarse DG Mixes (WSDOT, 2004) => Vacuum Seal

TESTING METHODS

Loose Asphalt (Mixes: AC10 AC14, SMA10 & OG14)	,	Gyratory Compaction (80 Cycles @ 150 ⁰ C)
Asphalt Pats (Approx. 100 mm Diameter x 65 mm Height)		Asphalt Pats & Cores (Approx. 100 mm Diameter x Layer Thickness)

Bulk Density (Pre-saturation): AS2891.9.2

Bulk Density (Mensuration): AS2891.9.3

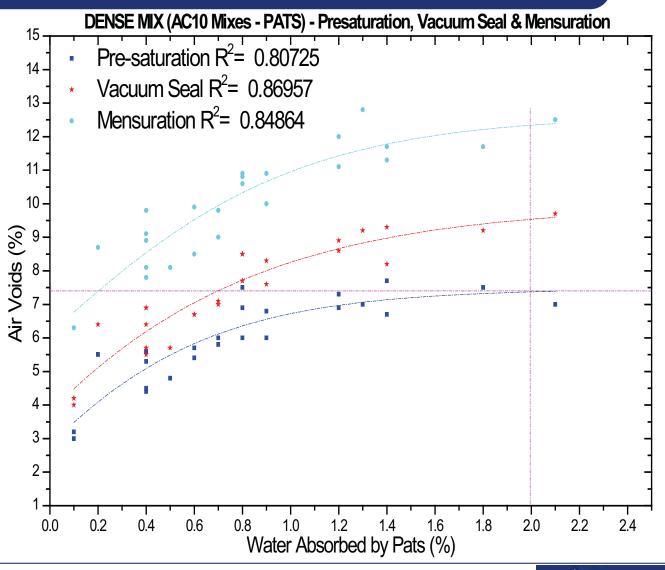
Vacuum Seal (WA 733.2): Bulk _ Density = $\frac{m_1}{(V_{TS} - V_{Bag})}$

TESTING METHOD - VACUUM SEAL

Vacuum Seal (WA 733.2): $Bulk _Density = \frac{m_1}{(V_{TS} - V_{Bag})}$

- Vacuum Sealing Bulk Density (t/m³) = Pat Dry Mass (g) / [Volume of Pat & Plastic Bag (cm³) - Volume of Plastic Bag (cm³)]
- Volume of Pat & Plastic Bag V_{TS} (cm³) = [Dry Mass of Pat (m³) & Plastic Bag (m³) – Wet Mass of Pat & Plastic Bag in Water(m³)] * Water Density
- Volume of Plastic Bag V_{Bag} (cm³) = Dry Mass of Plastic Bag (m³) (g) / Plastic Bag Density (g/cm³)

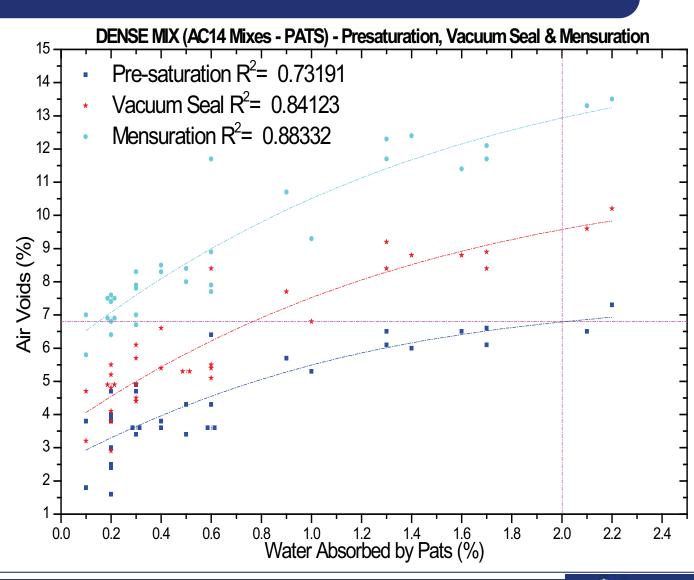
VACUUM SEALING METHOD



MIX: AC10M (AC14 Interstate)

Three tests against Absorption

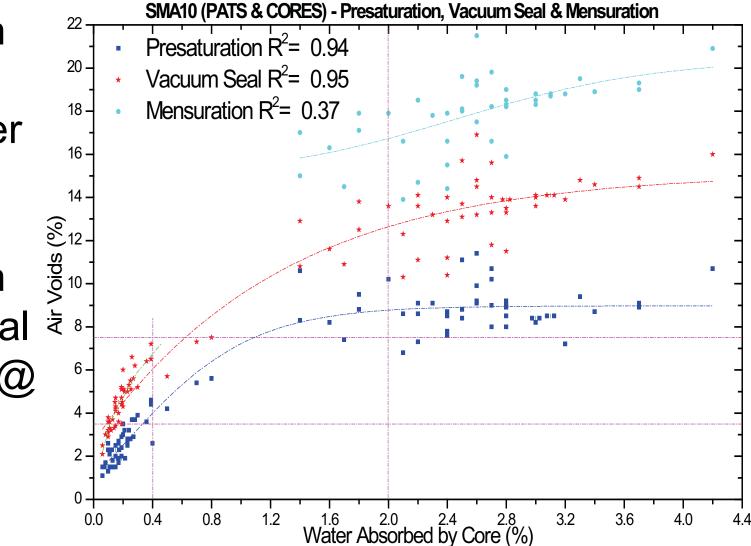
Difference
between three
methods as
expected


> 7% air voids limit for Pre-saturation

MIX: AC14M (AC20 Interstate)

- Similar to AC10M
- Pre-sat. line tends to horizontal after 7% void

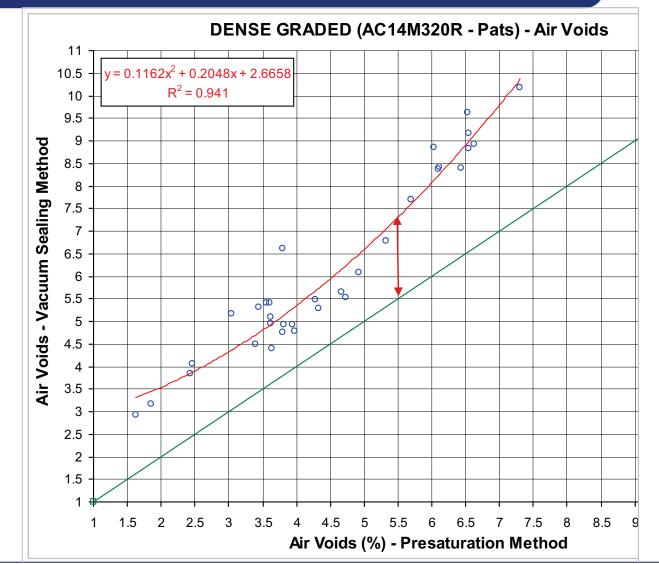
Higher water absorbed by Pats @ same air voids due to surface texture



MIX: SMA10 (SMA14 Interstate)

Presaturation line tends to horizontal after 7% void

► Presaturation & Vacuum Seal Data diverge @ approx 0.4% Absorption

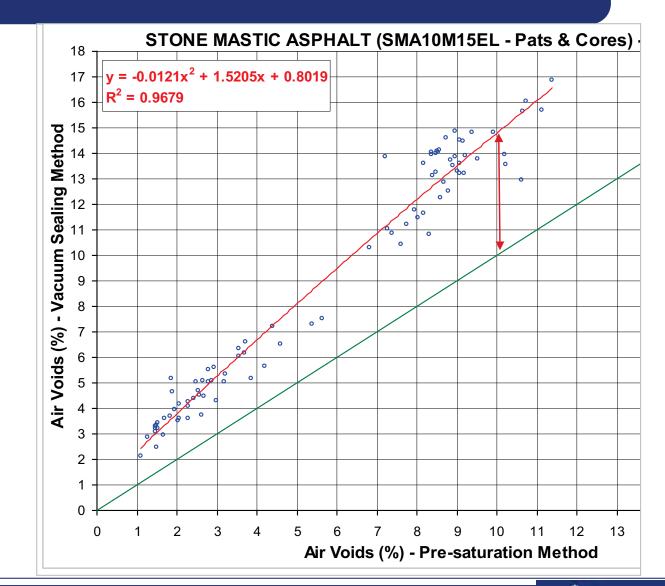


MIX: AC14M320R (AC20 Interstate)

A slightly coarse dense mix

Difference increases as voids increase, R²=0.94

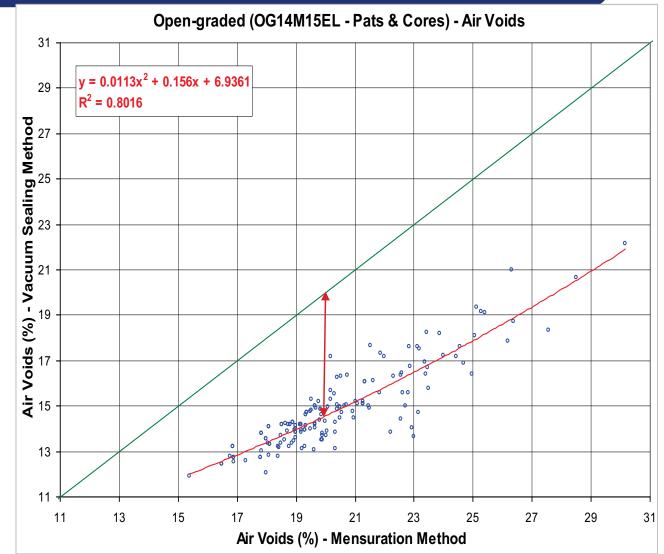
Step change at 5.5% pre-sat method @1.8% air voids difference



MIX: SMA10 (SMA14 Interstate)

SMA is a coarse gap graded mix, has very high surface texture.

Step change at 10% pre-sat method @15% air voids difference



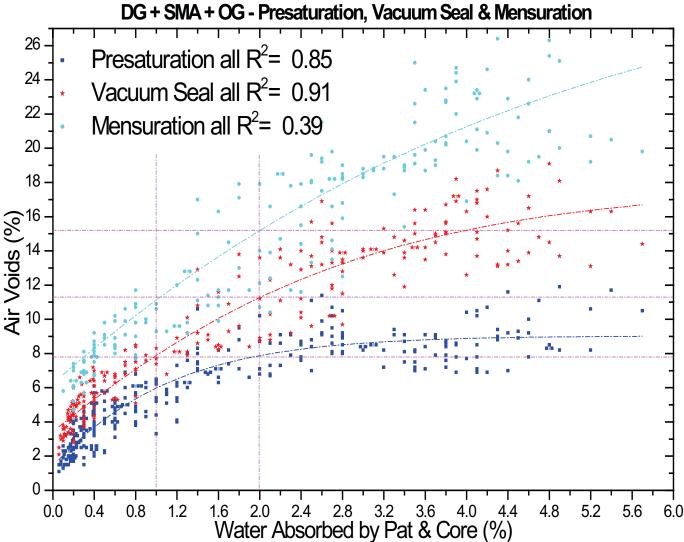
MIX: OG14 (OG20 Interstate)

OG is a gap graded mix, has high surface texture and is porous

Step change at 20% Mensuration method @15% air voids difference

EFFECTS OF TEXTURES & ABSORPTION

- SMA10: 80 Cycles Gyropac Pat (Left) & 350 Cycles (Right)
- > 80 cycles Pat: Less compacted
 => High texture & voids => High absorption



SUMMARY: ALL ASPHALT MIXES (DENSE GRADED, SMA10 & OG14)

 Presaturation method drops off at 2.0% absorption & 7.5% air voids.

Vacuum seal method increases over full air voids range.

CONCLUSION - 1 to 3

 Presaturation, Vacuum Seal and Mensuration bulk density tests provide different void results for the range of samples tested.

- > 2) Pre-saturation test has serious limitations for asphalt samples with high void levels, with inaccuracy encountered at approx. 7% air voids above.
- > 3) The "Absorption" check on Pre-saturation provides a useful check on the test's suitability, and should be incorporated into the appropriate Australian Standard.

CONCLUSION - 4 to 6

- > 4) When Pre-saturation is outside its range of suitability, Vacuum Seal could be used, but a step change exists between the two methods making this option a little impractical.
- 5) The absorption limits of 2% DG & 0.4% SMA for each mix type need to be calibrated to Australian practice and asphalt mixes.
- > 6) Vacuum Seal is a bulk density test that could be used on all asphalt mix types to create a seamless voids comparison but is considered not to be economical for regular Dense Grade production use.

CONCLUSION - 7 to 10

- > 7) The vacuum seal method is considered to be suitable for Stone Mastic Asphalt, especially for in-situ cores, but also mix design and production samples.
- 8) The Open-graded air voids of 20% (Mensuration) is equivalent to Stone Mastic (Pre-saturation) air voids of 10%.
- > 9) The vacuum sealing method should be introduced into Australian Standard
- > 10) The vacuum sealing method has the potential to be used as the dispute resolution method.

FUTURE RESEARCH

Continued testing investigation of the vacuum sealing method to determine step change value at 2% absorption for each asphalt company DG mix e.g. AC20 mixes.

AAPA's 14th International Flexible Pavements Conference

Further information.

AAPA 2011 Conference Proceeding Paper of "Bulk Density Investigations in South Australia"

Authors: Johnny Tran & Hugo Van Loon

