AAPA's 14th International Flexible Pavements Conference

> Sydney 25–28 September 2011

Project Level Methodology for Flexible Pavement Design

Authors: Ernesto Urbáez / James Erskine

PRESENTER: James Erskine Senior Engineer Fugro PMS-Australia

GENERAL OBJECTIVE

• Examine developments made to the Austroads methodology for flexible pavement design.

Provide a comparison against that of previous guides.

 Illustrate the incorporation of overseas research into a modified design procedure aimed at enhancing the design process.

Project Level Methodology for Flexible Pavement Design

First Guide Published in 1987 by the National Association of Australian State Road Authorities (NAASRA)

Re-issued in 1992 by Austroads

Significant revisions made to the Guide in 2004 and 2008

Flexible Pavement Design Guide considers a Mechanistic-Empirical Procedure

Fundamental material characteristics

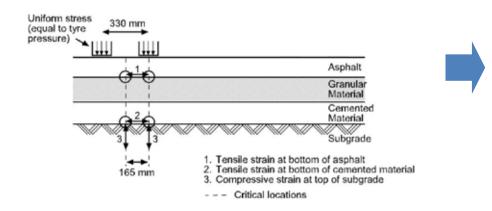
- Relationship between stress & strain (linear, non-linear)
- Time dependancy of strain (viscous, non viscous)
- Recovery of strain (elastic, plastic)

Failure mechanisms

- Empirical observations describing the axle repetitions to failure
- Fatigue of bound materials
- Permanent deformation of subgrade material

Pavement Response Model

1992


330 mm

165 mm

Uniform stress

(equal to tyre

pressure)

Half a Standard Axle
550 kPa tyre pressure

 Increased pavement thickness & stiffness – influence of opposite tyre set on strains deeper in the pavement

1800 mm

330 mm

Asphalt Granular

Material

Material

Cemented

Subgrade

....

Tensile strain at bottom of asphalt

Critical locations

3. Compressive strain at top of subgrade

Tensile strain at bottom of cemented material

- Full Standard Axle
- Radial tyres 750 kPa (1997)

Design Traffic (Standard Axle Repetitions – SARs)

1992

- Limited load axle data with which to determine Traffic Load Distributions (TLDs)
- SARs estimated as;
 - I.1 x ESA (asphalt & subgrade)
 - Ø 18 x ESA (cemented)
- Exponent of strain dependency
 - Ø Asphalt 5
 - Ø Subgrade 7.14
 - Ø Cemented − 18

2004

- WIM data used to determine TLDs for Urban & Rural roads
- Incorporation of the number of HVAGs
- SARs determined for each failure mechanism based on damage exponent
- Damage Exponent
 - Ø Asphalt 5
 - Subgrade 7
 - Ø Cemented 12
- Consistent with exponent of strain dependency

• Fatigue of Asphalt $N = RF \frac{1}{1} \frac{6918 (0.856 Vb + 1.08) \ddot{u}^{5}}{S_{mix}^{0.36} me} \frac{\dot{y}}{b}$

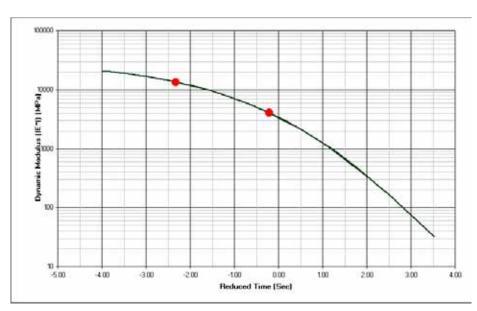
Reliability Factors ranging from 2.5 – 80% to 0.67 – 97.5%

• Subgrade Permanent Deformation $N = \overset{\mathfrak{B}511}{\underbrace{\mathsf{p}}_{a}} \overset{\mathfrak{T}^{7.14}}{\underbrace{\mathsf{me}}_{a}} \qquad N = \overset{\mathfrak{B}9,300}{\underbrace{\mathsf{q}}_{a}} \overset{\mathfrak{G}^{\prime}}{\underbrace{\mathsf{me}}_{a}}$

Relationship considered reliable up to 1x108 SARs therefore no reliability factors

• Fatigue of Cemented Materials $N = RF \frac{\hat{e}_{E}^{\# 13000} / E^{0.804} + 191 \ddot{e}_{U}^{UU}}{\hat{e}_{R}^{U}}$

Reliability Factors ranging from 4.7 - 80% to 0.5 - 97.5%


Modified Mechanistic-Empirical Pavement Design Procedure

- Environmental factors
 - ø wet / dry seasons (tropics)
 - In the summer / cold winter (inland / southern regions)
- Coincidence with variable traffic loads/volumes
- Minimum six seasons
- Overseas research

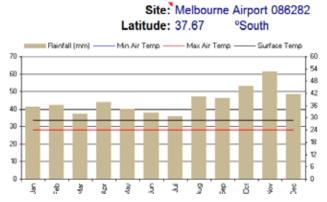
Modified Mechanistic-Empirical Pavement Design Procedure

- Temperature and rainfall
 - Ø Min & max air temperature
 - Mean monthly rainfall
 - Surface temperature (US Asphalt Institute)
 - Asphalt temperature at depth within the pavement (BELLS)
- Distribution of SARs
- Asphalt modulus
 - Ø Master curves
 - Ø Bitumen properties, mix volumetrics
 - Ø Temperatures
 - Ø Time of Loading

Design Comparison

Environmental and Traffic Inputs

Traffic volumes fluctuate throughout the year with lower volumes in winter and the end of the year


Stiffness of granular material reduced in winter months despite no clear wet season to reflect lower evaporation rates in winter

Project Reliability of 90%

 Standard approach considered only the distribution of traffic, with the asphalt modulus based on a WMAPT and granular materials based on soaked wet season state

 Modified approach considered both the distribution of traffic and affect of rainfall and temperature on the stiffness of granular materials and asphalt across the six seasons

Seasonal Traffic / Environmental Details

Traffic (SARs)	Jan	Mar	May	Jul	Sep	Nov
Distribution	20.0%	20.0%	15.0%	15.0%	20.0%	10.0%
Fatigue of Asphalt	5.52E+05	5.52E+05	4.14E+05	4.14E+05	5.52E+05	2.76E+05
Rutting & Shape Loss	8.28E+05	8.28E+05	6.21E+05	6.21E+05	8.28E+05	4.14E+05
Fatigue of Cemented Materials	7.08E+06	7.08E+06	5.31E+06	5.31E+06	7.08E+06	3.54E+06
-						
Environment	Jan	Mar	May	Jul	Sep	Nov
Rainfall (mm)	41.7	40.6	38.9	41.4	49.7	54.8
Min. Air Temp (°C)	24.0	24.0	24.0	24.0	24.0	24.0
Max. Air Temp (°C)	24.0	24.0	24.0	24.0	24.0	24.0
Surface Temperature (°C)	24.0	24.0	24.0	24.0	24.0	24.0
Granular Reduction Factor	1.00	1.00	1.00	1.00	1.00	1.00

Modified Approach

Seasonal Traffic / Environmental Details

Site: Melbourne Airport 086282	Traffic (SARs)	Jan	Mar	Мау	Jul	Sep	Nov
Latitude: 37.67 °South	Distribution	20.0%	20.0%	15.0%	15.0%	20.0%	10.0%
Rainfall (mm) —— Min Air Temp —— Max Air Temp —— Surface Temp	Fatigue of Asphalt	5.52E+05	5.52E+05	4.14E+05	4.14E+05	5.52E+05	2.76E+05
70	Rutting & Shape Loss	8.28E+05	8.28E+05	6.21E+05	6.21E+05	8.28E+05	4.14E+05
60 54	Fatigue of Cemented Materials	7.08E+06	7.08E+06	5.31E+06	5.31E+06	7.08E+06	3.54E+06
50 40 40	Environment	Jan	Mar	Мау	Jul	Sep	Nov
	Rainfall (mm)	41.7	40.6	38.9	41.4	49.7	54.8
24	Min. Air Temp (°C)	13.9	11.4	7.3	5.6	7.7	11.2
p	Max. Air Temp (°C)	26.4	22.2	15.1	13.7	17.9	23.2
	Surface Temperature (°C)	31.1	27.1	20.3	19.0	23.0	28.0
	Granular Reduction Factor	0.99	0.95	0.85	0.81	0.92	0.95

Pavement Structure

	ŧ	ε								
0	me	for	Degree of	[Jan	Mar	Мау	Jul	Sep	Nov
AC	ర	å	Anisotropy	Poisson's Ratio			Modulus	(MPa)		
Layer 1 🗹			1	0.40	2611	2611	2611	2611	2611	2611
Layer 2 🗹			1	0.40	3270	3270	3270	3270	3270	3270
Layer 3 🗆			2	0.35	390	390	390	390	390	390
Layer 4 🗆			2	0.35	170	170	170	170	170	170
Layer 5 🗆			2	0.35	95	95	95	95	95	95
Layer 6 🗆			2	0.35	53	53	53	53	53	53
Layer 7 🗆		V	2	0.45	30	30	30	30	30	30
									•	

Modified Approach

Pavement Structure										
	ť	ε			Season					
0	a di	for	Degree of		Jan	Mar	Мау	Jul	Sep	Nov
AC	õ	õ	Anisotropy	Poisson's Ratio			Modulus	(MPa)	_	
Layer 1 🗹			1	0.40	1737	2600	4585	5075	3740	2384
Layer 2 🗹			1	0.40	2566	3751	6378	7071	5340	3492
Layer 3 🗆			2	0.35	476	457	409	389	442	457
Layer 4 🗆			2	0.35	207	199	178	170	193	199
Layer 5 🗆			2	0.35	116	112	100	95	108	112
Layer 6 🗆			2	0.35	65	63	56	53	61	63
Layer 7 🗆		V	2	0.45	37	35	31	30	34	35

Pavement Materials

			Thickness						
	Material	Description	(mm)	Modulus C	Calculation Method	Constants			
Layer 1	Asphalt	DG14	40	PMS-QF4-	003				
Layer 2	Asphalt	DG20	63	PMS-QF4-	003				
Layer 3	Granular(Sub Layered)	Crushed Gravel	150	Power	Austroads Gravel	k1	2.2973967	k2	1
Layer 4	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 5	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 6	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 7	Subgrade	Silty Clay	0	Rainfall Ad	justment	Dry Mod.*	30		

Modified Approach

Pavement Materials

	Material	Description	(mm)	Modulus C	alculation Method	Constants			
Layer 1	Asphalt	DG14	40	PMS-QF4-	003				
Layer 2	Asphalt	DG20	50	PMS-QF4-	003				
Layer 3	Granular(Sub Layered)	Crushed Gravel	150	Power	Austroads Gravel	k1	2.2973967	k2	1
Layer 4	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 5	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 6	Granular(Sub Layered)	Subbase Select	125	Power	Austroads Select	k1	1.7817974	k2	1
Layer 7	Subgrade	Silty Clay	0	Rainfall Adj	ustment	Dry Mod.*	37		

Damage Permanent Deformation		Reliability Factor			Damage Fac	tor (%)			
	Layer 7	1	0%	0%	0%	0%	0%	0%	5.8
								0%	Accepted
								1.20.E+09	SAR's
								20	Years
Damage Asphalt Fatigue		Reliability Factor			Damage Fac	tor (%)			
	Layer 1	1.5	0%	0%	0%	0%	0%	0%	6.5.6
	Layer 2	1.5	19%	19%	14%	14%	19%	9%	6.5.6
								95%	Accepted
								2.91.E+06	SAR's
								20	Years
Damage Cemented Materials Fatigue		Reliability Factor			Damage Fac	tor (%)			
									N/A
								N/A	SAR's
								N/A	Years

Modified Approach

Damage Permanent Deformation		Reliability Factor			Damage Fact	tor (%)			
	Layer 7	1	0%	0%	0%	0%	0%	0%	5.8
								0%	Accepted
								1.88.E+09	SAR's
								20	Years
Damage Asphalt Fatigue		Reliability Factor			Damage Fact	tor (%)			
	Layer 1	1.5	0%	0%	0%	0%	0%	0%	6.5.6
	Layer 2	1.5	13%	17%	17%	19%	19%	8%	6.5.6
								94%	Accepted
								2.93.E+06	SAR's
								20	Years
Damage Cemented Materials Fatigue		Reliability Factor			Damage Fact	tor (%)			
									N/A
								N/A	SAR's
								N/A	Years
									-

Conclusion and Future Developments

The most recent Austroads Pavement Design Guide incorporates;

- More detailed traffic load distributions for urban and rural roads based on the collection of substantial WIM data.
- Pavement response model
- Design confidence

Modified Approach

- Material characterisation according to temperature and rainfall variation
- Asphalt Modulus Master Curve, Volumetrics, Temperature, Load Frequency

Future Developments

• Asphalt Modulus - Daily temperature vs hourly traffic spectrum