AAPA's 14th International Flexible Pavements Conference

> Sydney 25–28 September 2011

FWD Testing as a Quality Control Tool

Joe Grobler / Cameron Taylor GHD

Introduction

- Falling Weight Deflectometer (FWD)
- Testing during construction (PSTS101)
- Development of benchmark criteria
- Methodology based on Foundation Surface Modulus (FSM)
- Case Study
- Limitations and Considerations

Heavy Duty Pavements in QLD

- DTMR recommends HILI pavements for roads that carry more than 1000 ESA's in the design lane at time of opening.
- HILI Pavements:
 - PCP, JRCP, CRCP
 - Flexible Composite
 - Deep Strength Asphalt
 - Full Depth Asphalt

Working Platform

- Requires working platform underneath HILI pavements:
 - Granular material stabilised with min. 2 % cement
 - 1 MPa < UCS < 2 MPa
 - Working platform properties specified in PSTS101 and Pavement Design Manual
- Contractor to analyse FWD data to determine general stiffness and identify sections for further testing

Working Platform

- No acceptance/benchmark criteria in PSTS101
- Problematic in contractual environment
- Assessment procedure:
 - Cleary defined benchmark criteria prior to construction
 - Unique solution and high repeatability
 - Minimum analysis and fast turnaround time
 - Consider impact of combined underlying layers

FWD Analysis

- Two ways to evaluate FWD data:
 - Deflection bowl parameters (max deflection, curvature, layer indices)
 - Backcalculation of layer stiffness
- Backcalculation not considered practical during construction:
 - Non-uniqueness of solutions
 - Requires specialised software
 - Requires experienced pavement engineers
- Deflection bowl parameters considered more appropriate:
 - High repeatability, measurable, low level of analysis

Recommended Approach

- Foundation Surface Modulus (FSM)
- Adopted by UK Highways in their performance specifications
- Composite value based on contribution of underlying layers i.e. max. deflection

•
$$E = \frac{2 \times (1 - v^2) \times R \times P}{2}$$

 Determine theoretical FSM of design foundation model and compare to measured FSM during construction

Theoretical Model (Chaddock)

Recommended Approach

- The theoretical values should be adjusted to allow for field conditions (confinement effect of pavement, deterioration of cemented materials, future strength gain)
- IAN 73/06 recommends the following factors:
 - 0.8 for unbound materials (confinement effect)
 - 1.5 for fast-setting cemented materials (deterioration in-service)
 - 0.75 for slow-setting materials (future strength gain)
- Use factors in interim, requires further refinement for local conditions

Benchmark Criteria

- Benchmark criteria = theoretical value x adjustment factor
- Compare measured FSM / deflections to benchmark criteria to identify potential problem areas
- Designer includes project specific criteria in Annexure to PSTS101

Case Study

- Upgrade of existing 2 lane highway to a 4 lane motorway west of Brisbane
- Heavy duty pavement:
 - 45 mm SMA
 - 45 mm Dense graded AC with PMB
 - 300 mm Dense graded AC with Class 600 binder
 - 150 mm Working platform (UCS = 1.5 MPa)
 - 150 mm Select Fill (CBR 45)
 - Subgrade (CBR 20)

Theoretical Design Model

Benchmark Values

- Target FSM = 1.5 x 140 MPa = 210 MPa (225)
- Target deflection = 1074 μ m / 1.5 = 716 μ m

Measured FSM

Measured Foundation Surface Modulus

Additional Investigations

- Additional investigations:
 - Backcalculation of layer stiffness
 - Dynamic Cone Penetrometer (DCP)
 - Test pits
 - Proof roll

Backcalculation of Layer Stiffness

• Results indicated potential issues with underlying select fill and upper subgrade layers

DCP Testing

Test Pits

- 2 test pits were excavated in the area that has been identified as having a lower FSM
- A high moisture content was observed in the select fill and upper subgrade layers

Moisture in layers below working platform

Limitations and Considerations

- Availability of equipment
- Processing time and resources
- Corrective actions during construction

Conclusions and Recommendations

- FSM concept can be applied to FWD testing during construction
- Further work required on evaluation criteria for local materials and conditions

