AAPA's 14th International Flexible Pavements Conference

Sydney 25–28 September 2011

Bitumen Treated Basecourse - Rapid and resilient network option

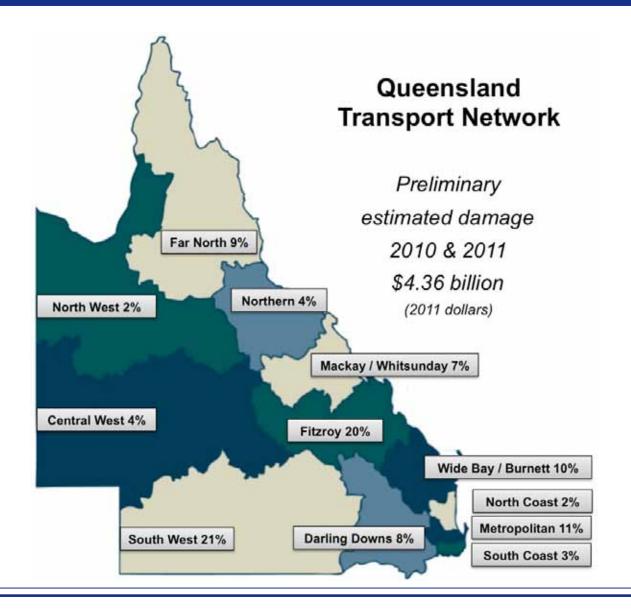
Rob Vos

Queensland Executive
Australian Asphalt Pavement Association

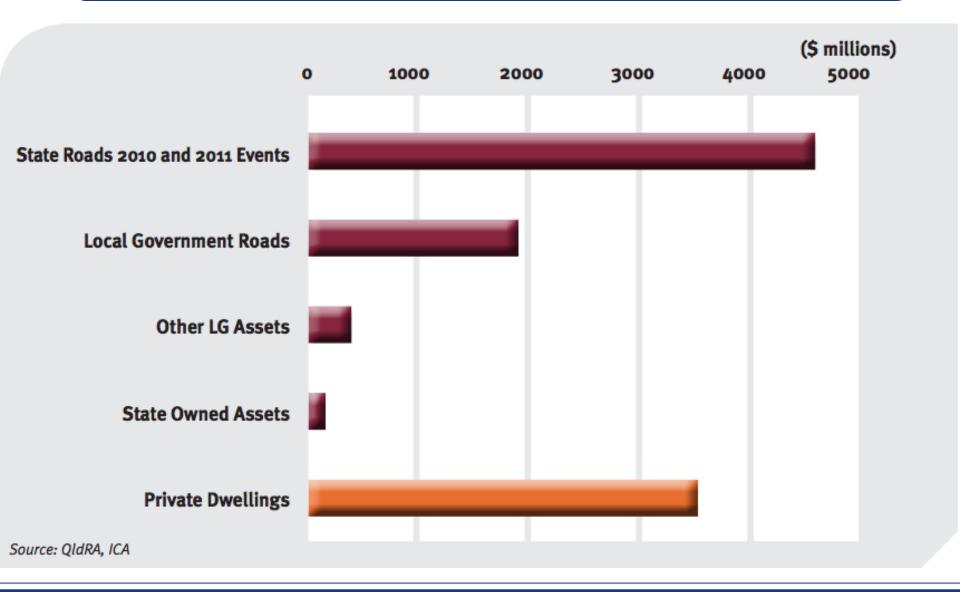
Presentation Overview

- Report on floods in Queensland
- Extent of damage to the transport network
- Delivering the reconstruction program
- Bitumen Treated Basecourse review
- Examples of BTB projects
- BTB specification developed through AAPA
- Draft specification details
- Overview BTB improved resilience

Report on floods in Queensland

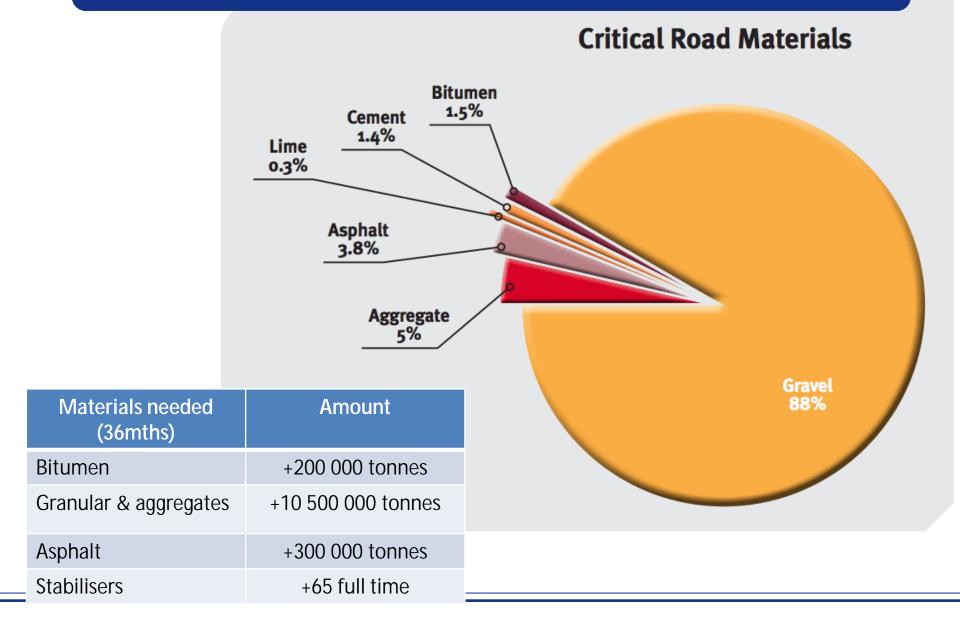


Damage across the whole state, 85% of roads with pavement damage, road users aware of the inconvenience and economic impact.

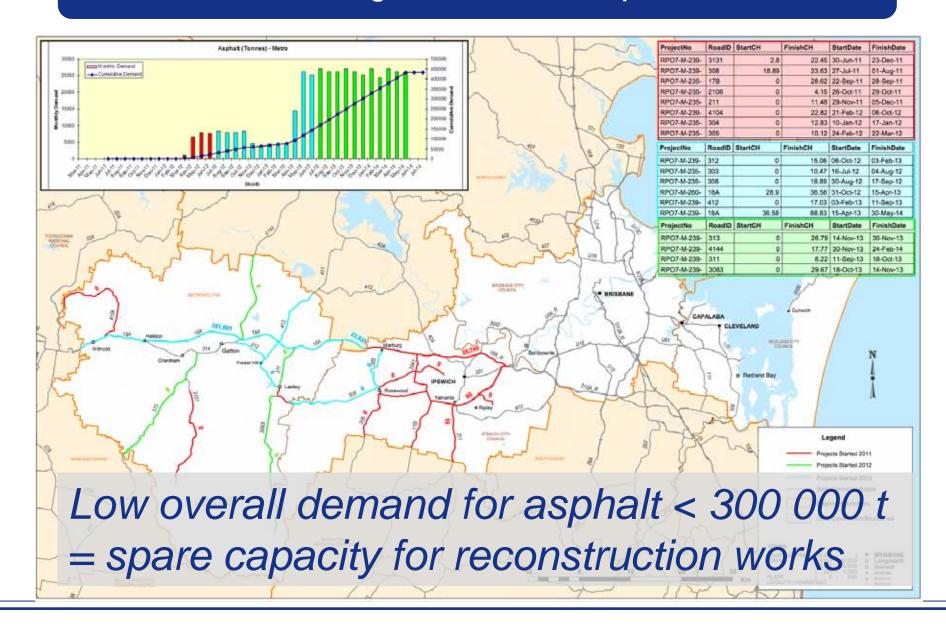


Extent of damage to the transport network

Extent of damage to the transport network



Delivering the reconstruction program


Table 1: Transport Network Reconstruction Program – Objectives and Strategic Risks (1)

Objectives	Strategic risks
 Coordination across lines of reconstruction 	Cost escalation - materials and labour
Resilience of network	 Decreased availability – plant and material
 Immunity enhancement opportunities 	Market unable to meet demand
Value for money	 Attracting and retaining contractor involvement
Timely completion	Market overheating
Communication and engagement	 Competing demand for resources (mining)
Transition back to normal business	Lack of coordination in delivery
	Continued wet weather

Extent of damage to the transport network

Extent of damage to the transport network

Delivering the reconstruction program

Metropolitan Region

Warrego Highway

Length of repairs: Ipswich/Somerset/Lockyer LGAs

Treatment type: TBC

Tender date: From March 2012

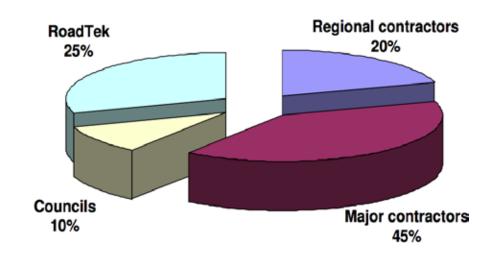
Value of works: Over \$100 million - 3 packages

(different work types)

Gatton area

Length of repairs: Intermittent repairs
Treatment type: Overlay and widening

Tender date: June 2012 Value of works: \$18 million


Rosewood area

Length of repairs: Intermittent repairs

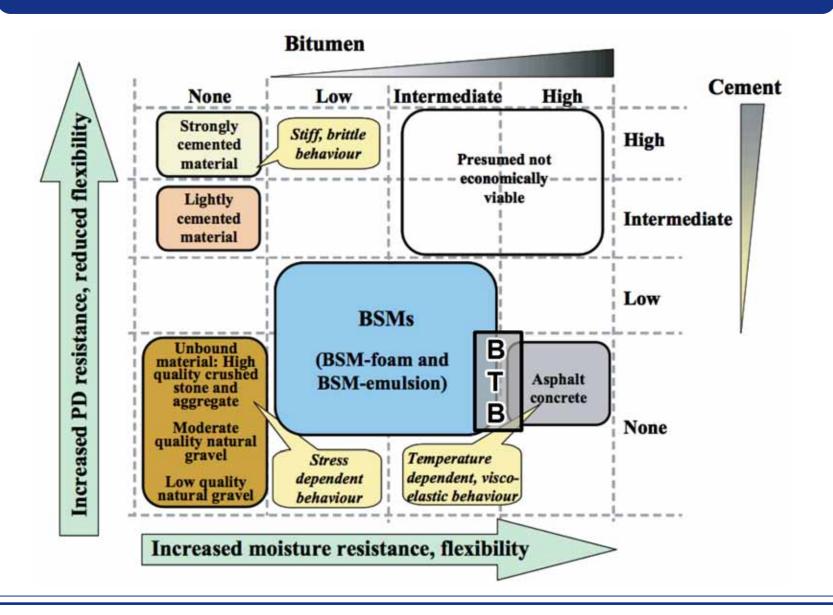
Treatment type: Overlay and widening/Patching

Tender date: October 2011 Value of works: \$12 million

Delivering the reconstruction program

Accessing spare capacity in the HMA sector to speed up delivery -> BTB revisited

Materials needed (36mths)	Amount
Bitumen	+200 000 tonnes
Granular & aggregates	+10 500 000 tonnes
Asphalt	+300 000 tonnes
Stabilisers	+65 full time


Region	2006	2008
Sunshine Coast	265	565
Metro	1060	2100
Toowoomba	200	200
Gold Coast	300	550
Rest of Queensland	835	875
Mobiles	950	1050
TOTALS (tonnes/hour)	3595	5340

Bitumen Treated Basecourse - review

Bitumen Treated Basecourse principles

- Is not a substitute for hot mix asphalt
- Uses locally available quarry "run of crusher"
- Uses good quality aggregate of large size
- Has a smooth aggregate grading with mechanical interlock
- Avoids rounded sands natural sand is OK
- Has a relatively low binder content
- Uses production and laying techniques to minimise segregation
- Recognises the importance of good compaction

Bitumen Treated Basecourse - review

Examples of BTB projects - 1

Enhanced Road Condition Project: Nanango for QTMR – contractor: Boral

- Binder 3.5% ± 0.3%, Marshall 50 blow design,
- Compaction 96% CV min to Marshall design
- PI & Linear shrinkage limits set for fine aggregate
- 10+ years under traffic visually good condition

Examples of BTB projects - 2

Queensland Mackay Regional Council – various contractor: PRS / Fulton Hogan

- Based on QTMR basecourse and DGA specifications
- Binder 3.5% to 4.0%, Marshall 50 blow design,
- Placed from 150 to 350 mm thick, 50mm DG above
- Advantage of rapid placement in municipal area

AC - 50mm DG14. (C320 binder)

BTB- 200mm

Type 2.3 BTB, 4% binder, (C320 binder) (two layers)

Insitu Insitu (CBR 4.5)

<u>Traffic Statistics</u>

AADT = 5700

% H.G.V = 3.9%

Date Recorded: November 2006

Date of Construction

February 2007

Alfred St Macalister St – Gregory St


Mackay REGIONAL COUNCIL

Examples of BTB projects - 3

New South Wales

- Blacktown

Contractor: Boral

- Full depth asphalt pavement "black velvet" 310mm
- Carried 4.7 x 10⁶ ESA since 1982
- Advantage of rapid placement in municipal area
- Weak subgrades, asphalt grader laid

Specification developed

Supported by the QTMR BTB Steering Committee, AAPA developed a draft BTB specification based on QTMR documents for dense graded asphalt and granular materials.

- 1. Granular material
- 2. Bitumen
- 3. Mix design and parameters
- 4. Compaction
- 5. Armour coating

1. Granular Material

Based on MRTS 05 – Type 2.1 material

Table 10.3.1 – Grading limits (Particle Size Distribution Envelopes)

AS Sieve Size (mm)	Percentage Passing by Mass			
	Grading C	Grading B		
53.0	100	100		
37.5	100	85 – 100		
19.0	80 – 100	55 – 90		
9.5	55 – 90	40 – 70		
4.75	40 – 70	28 – 55		
2.36	30 – 55	20 – 45		
0.425	12 – 30	10 – 25		
0.075	5 – 12	4 – 10		

Grading envelope narrowed at the 0.075mm sieve

Target gradation similar tolerances to dense graded asphalt

2. Bitumen

- Class 320 based on MRTS17
- 3.5% to 4.5%

3. Mix design & parameters

- 50 blow Marshall design
- 4 6% or 6 10% air voids determine in trials

Table 10.3.3 – Bitumen Treated Base Design Requirements

Property	Unit	Limit	Value	
			Grading C	Grading B
Air Voids in the compacted job mix	%	Minimum	6	6
		Maximum	10	10
Stability	kN	Minimum	6	6
Flow	mm	Minimum	2	2
Stiffness	kN/mm	Minimum	1.5	1.5
Voids in mineral aggregate (VMA)	%	Minimum	11	11
Maximum density	t/m³	-	Tbr	Tbr

Thr to be recorded

3. Mix design & parameters

Table 10.3.4.1 – Bitumen Treated Base Design Performance range

Property	Unit	Limit	Value	
			Grading C	Grading B
Wheel Tracking rut rate rut depth	mm/kCycle mm	Maximum Maximum	≤ 0.35 ≤ 5.0	≤ 0.35 ≤ 5.0
Indirect tensile resilient modulus @25°C	MPa	Range	2 000 to 7 000	2 000 to 7 000
Fatigue life of compacted bituminous mixes subject to	Cycles to Failure	Report	Report	Report
repeated flexural bending	decrease in initial modulus	Report	Report	Report

Note: The Administrator retains the authority to approve the design if these properties above are exceeded.

4. Compaction

either

- > 90% CV of Maximum Density, or
- > 96% CV of Marshall compaction of production mix

Concern was expressed at BTB Steering committee level about possible bitumen stripping and a higher density and binder content is to be trialed in the project

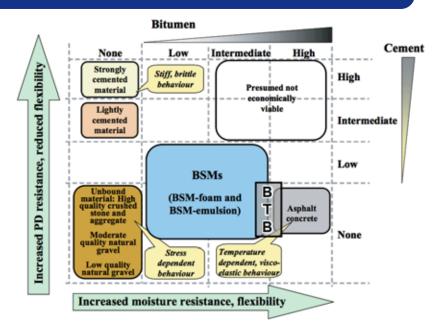
5. Armour coat

- 7 mm aggregate, class 320 binder
- to reduce loss of binder into BTB
- To promote vertical impermeability

Early contact outcomes

- Draft specification being used on the Warrego Highway
- Early test results with 4.05% binder have densities at 2% or more above minimum
- Contactor trialing foaming in the hot mix asphalt plant

Material transfer device and auger fed paver used to


limit segregation

Overview – BTB improved resilience

In the spectrum of bitumen additions to granular materials BTB offers:

- Rapid placement of high quantities of basecourse materials
- Minimised disruptions to traffic, lanes open for immediate occupation
- Bitumen treated base has greater resilience to flooding and water flow
- Provides improved performance for regionally available base materials
- Lower risk and economic pavement improvement