

Evolution of HMA Plants & Pavements for a Sustainable Future

AAPA 14th International Conference September 2011

FAMILY OF COMPANIES

ASTEC: Active in Industry

- Across the world support and active participation in associations like:
 - NAPA
 - AAPA
 - Association of Equipment Manufacturers
 - American Road and Transportation Builders association

California travel

Washington, Tennessee & Alabama travel

AAPA 2010 Study Tour to USA

Key issues for the tour

- Perpetual Pavements
- Warm Mix Asphalt
- Recycled Asphalt Pavements

In conjunction with Astec Australia, we organized meetings in the USA with key Departments of Transport, Asphalt Contractors and Academia / Researchers.

AAPA Study Tour at ASTEC

- Marshall Thompson
 - Fatigue Endurance Limits
 - Perpetual Pavements
 - RAP & RAS
- Don Brock
 - WMA & RAP

Organized meetings with D.O.T.'s & transport across TN, NC, SC and AL

AAPA 2011 Study Tour at NCAT in Auburn, Alabama

Listening, learning and taking the message back to Australia

AAPA 2011 Study Tour Outcomes

- Perpetual Pavements
 - Strong support for long life flexible pavement project with USA feedback on concepts and practice
 - Links to NCAT, FHWA, State DoT for materials performance
 - Meeting visitors to this conference: David Timm, Marshall Thompson, Buzz Powell
- WMA & RAP
 - Increased acceptance of benefits
 - Advantages of combining WMA & RAP
 - Drive for use of all available RAP
 - Increased acceptance of WMA in Australian spec's

Sir Walter Raleigh discovers Trinidad Asphalt Lake

Barber Asphalt & Paving Co.

PROCESS FLOW DIAGRAM FOR BATCH MIX ASPHALT PAVING PLANTS

PROCESS FLOW DIAGRAM FOR BATCH MIX ASPHALT PAVING PLANTS

PROCESS FLOW DIAGRAM FOR BATCH MIX ASPHALT PAVING PLANTS

Grading Requirements for Coarse Aggregates

Size Number	Normal Size (Sieves with Square Openings)	Amounts Finer Than Each Laboratory Sieve (Square-Openings), Weight Percent												
		4 inch (100mm)	34 inch (90mm)	3 inch (75mm)	2 ½ inch (63mm)	2 inch (50mm)	1 ½ inch (37.5mm)	1 inch (25mm)	% inch (19mm)	½ inch (12.5mm)	% inch (9.5mm)	No. 4 (4.75mm)	No. 8 (2.36mm)	No. 16 (1.8mm)
1	3½ in. to 1½ in. (90 to 37.5mm)	100	90-100		25-60		0-15		0-5					
2	2½ in. to 1½ in. (63 to 37.5mm)			100	90-100	35-70	0-15		0-5					
3	2 in. to 1 in. (50 to 25mm)				100	90-100	35-70	0-15		0-5				
357	2 in. to No 4 (50 to 4.75mm)				100	95-100		35-70		10-30		0-5		
4	1½ in. to ¾ in. (37.5 to 19mm)	6				100	90-100	20-55	0-15		0-5			
467	1½ in. to No. 4 (37.5 to 4.75mm)					100	95-100		35-70		Oct-34	0-5		
5	1 in. to ½ in. (25 to 12.5mm)						100	90-100	20-55	0-10	0-5			
56	1 in. to ¾ in. (25 to 9.5mm)						100	90-100	40-85	10-40	0-15	0-5		
57	1 in. to No. 4 (25 to 12.5mm)						100	95-100		25-60		0-10	0-5	
6	∛₄ in. to ¾ in. (25 to 4.75mm)							100	90-100	20-55	0-15	0-5		
67	3¼ in. to No. 4 (19 to 4.75mm)							100	90-100		20-55	0-10	0-5	
7	½ in. to No. 4 (12.5 to 4.75mm)								100	90-100	40-70	0-15	0-5	
8	in. to No. 8 (9.5 to 2.36mm)									100	85-100	10-30	0-10	0-5

Yellow indicates range of passing on 57's

ASTM Gradation Surface Standards

Mesh Number and Size	Surface Area Sq. Ft/Lb
200	150.2
100	73.9
50	37.2
30	18.8
16	9.3
8	4.65
4	2.33
3/8″	1.16
1/2″	0.87
3/4″	0.58
1″	0.43
1-1/2″	0.29
3″	0.145

ASTEC INDUSTRIES, INC.

Extreme Ranges of Gradation For 57 Stone

57 Stone	Coarse	Area	Fine	Area
	5	2.15	0	0
3/4				
1/2	70	60.9	40	34.8
3/8			-	
4	25	58.2	50	116.5
8	8		5	23.2
16	16		5	46.5
	121.3	mes	Surfa	221.0

A

RANGE OF 80% +

Segregation seen in 57 stockpile

Varying surfaces

Requires Additional Screening for Quality

These windrows are the same sizes identified from the Max Density Chart AND the Haystack Profile

Screening with Kolberg-Pioneer FT6203, 3 screens in place, make 4 windrows from 57's

Screened three-quarter by half

CITAL

HALF BY THREE EIGHTHS SCREENED MATERIAL

Screened 57's

ASTEC INDUSTRIES, INC.

REFINERY FLOW DIAGRAM

Parallel Flow Drum Mixer With Coater

Counterflow Drying Drum With Coater

RAP Content (%)	RAP Moisture Content (%)	Superheat Required (°F)			
		240°F Mix	260°F Mix	280'F Mix	300°F Mix
10	0	269	291	313	335
	1	274	296	318	340
	2	279	301	323	345
	3	284	306	328	350
	4	289	311	333	355
	5	294	316	338	360
20	0	292	317	342	367
	1	303	328	353	378
	2	314	339	364	389
	3	325	350	375	400
	4	336	361	386	411
	5	347	372	397	422
30	0	324	352	330	408
	1	343	371	599	427
	2	362	390	418	446
	3	381	409	437	465
	4	400	428	456	484
	5	419	447	475	503
40	0	366	397	430	463
	1	424	426	459	492
	2	453	455	488	521
	3	482	484	517	550
	4	511	513	546	579
	5	540	542	575	608
50	0	420	460	500	540
	1	464	504	544	588
	2	508	548	588	628
	3	552	592	632	672
	4	596	636	676	716
	5	640	680	720	760

NOTE: Calculations assume 10'F loss from dryer to pugmill and 70'F outside air temperature.

Standard Counterflow Dryer (superheat required)

Counterflow Drum Mixer

Double Barrel® Combination Dryer/Mixer

Astec Double Barrel Drum Mixer

Spot 1 190.6

Spot 3 201.6

Spot 6 104.3

Spot 2 190.4

- 200 Tons Per Hour
- 15% RAP used

205.0

200.0-

195.0

190.0-

185 0 -

180.0-

175.0-

170.0-

165.0 -

160.0-

155.0-

150.04

145.0

140.0-

135.0

130.04

125.0 -

120.0-

115.0 -

110.0-

Spot 4 183.2

320° F Mix Temperature
Located in Central Alabama, USA

COUNTER FLOW DRYER AND ROTARY MIXER

Double RAP[™] Dryer With Coater

1980-1990's HMA Facility with Single RAP Bin

Today's HMA Facility with Multiple RAP Bins

RAP Delivery System for Batch Plants

Batch Plant with Pugmill Mixer

Batch Plant with Drum Mixer

Batch Plant with Double RAP Dryer

Sustainability in HMA Pavements

<u>Brief USA Update</u>: RAP WMA Equipment Technologies

Average Use of RAP in the United States

1910.....approximately 10% 1925.....0 1970.....0 1980-85.....15% (some 50%) 2000......15% 2010......25-30% (some 50%) 2011......25-30% (some 60%) 2011 NOTE: Some over 60%

1/2 x 0 (12mm x 0) **6% AC**

1/2 x 4 (12mm x 6mm) 4% AC

7% AC

PROCESSED RAP SCREENED TO ORIGINAL INGREDIENTS

SUPERPAVE MIX with processed RAP - CHOICE #2

Use of WMA Pavement in the United States

2005/6	Test Projects (additives)
2007	Test Projects (+ foam)
2008	5 Million Tons AGS
2009	10 Million Tons AGS
2010	20 Million Tons AGS
2011	40 Million Tons AGS

Estimated Total Tons WMA using AGS: 75 Million Tons by 2011 Yr. End

G2 GREEN SYSTEM

BATCH GREEN SYSTEM

COATING THICKNESS

VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)

VISCOSITY / TEMPERATURE PG 64 -22 (Approx.)

No Smoke – No Smell...Why?

- Light oils are either put in asphalt or left in asphalt during refining
- These light oils boil at above 285°F
- By mixing at below 285°F, the boiling point is never reached...eliminating smoke (vapor) and corresponding smell

Benefits of High RAP & Warm Mix

For the Producer/Contractor

- Improved Workability
- No Smoke No Smell
- High Percentage Recycle Mix with Standard Grade of Asphalt
- 14% Less Fuel
- 14% Higher Production
- Reduces Cost

For the Worker

Comfort & Safety

For the DOT/Public

- Comfort & Safety of workers
- Improve Mixes

Why will we have a Longer Life Pavement?

- Less oxidation of mix
- More uniformity of compaction
- With fractionating RAP...more uniform

For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability

Why Sustainability?

- By Milling & Recycling 100% of the material can be re-used
- Reduce new aggregate requirement by 245,000,000 tons/year...annually (from 15% to 50%)
- Reduce oil consumption by 80,000,000
 bbl/year...approximately 7 days of
 imported oil

For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability
- Green

It's Green!

- Use 14% less fuel due to 50°F lower temperature
- No volatiles
- Use more recycle

For the DOT/Public

- Comfort & Safety of workers
- Improve mixes
- Sustainability
- Green
- Reduce Cost

What we have done to date

- Installed over 400 units to create hot foam mechanically ... est. 600 units of all types operating in USA
- Produced approximately 75 million tons from 0 to 50% RAP with warm mix
- Stored in silo for 4 days
- Produced 76-22 (Polymers) and placed at 270°F
- Produced rubber mix at 270°F

Conclusions:

- 1. HMA is 100% Recyclable
- 2. Milling corrects road profile, corrects drainage, eliminates raising shoulders and guardrails, and maintains bridge clearances...and generates RAP
- 3. By fractionating RAP and using Warm Mix (hot foam) with 50% RAP, it will produce a rut resistant, longer life pavement. It can be produced with a standard grade of AC. Density can be achieved with one less roller and centerline joint density is substantially improved
- 4. More miles can be paved at substantially less cost
- 5. Greenhouse emissions and imported oil are greatly reduced

Equipment

- New Sustainable <u>AND</u> Economical Technologies are key:
 - High RAP Plants for low cost per ton
 - Tier 4 Mobile Equipment
 - Alternative Fuels for Asphalt Plants
 - Alternative Energy for Bitumen Heating

Thank You (& G 'Day)

www.astecinc.com

