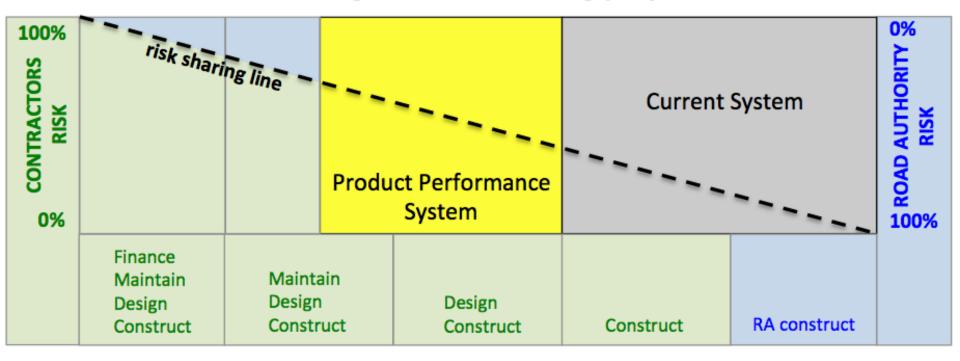
AAPA's 14th International Flexible Pavements Conference

> Sydney 25–28 September 2011

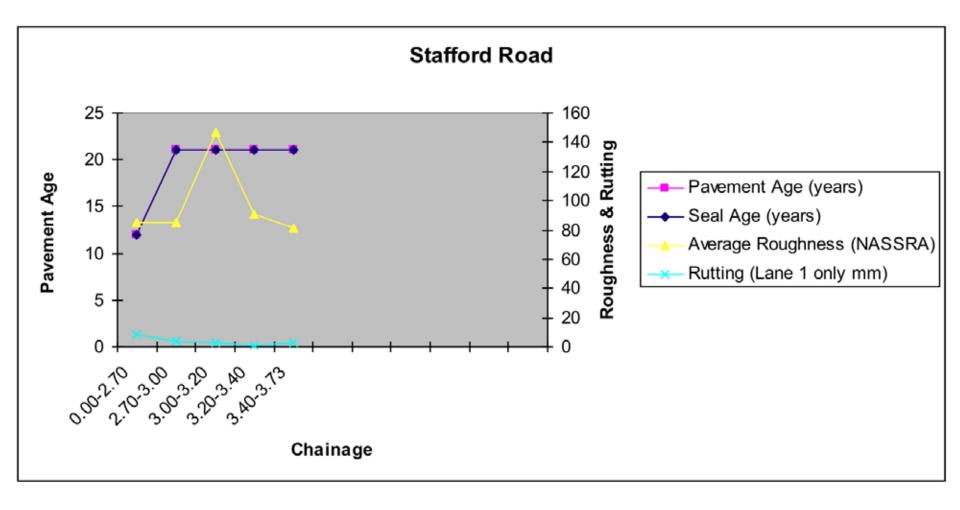
Performance-based contracts for asphalt surfacings-a contractors experience


Rob McGuire General Manager Queensland Boral Asphalt

- Increasing need for higher functional performance
 - Skid resistance, texture depth, impermeability
- Transferring increased responsibility to the asphalt contractor
- New form of contracting
 - Extended warrantee on functional properties
 - Contractor carries technical & financial risk
 - Encourages innovation
 - Promotes increased economies & efficiencies

Risk sharing on road surfacing projects

Risk sharing in road surfacing projects



• Type B2 Low permeability SMA 30 -40mm

- Assessed against
 - Visual defects
 - Straight edge deviation
 - Surface evenness
 - Surface texture depth
- Assessed at
 - Completion
 - 3 months
 - 24 months

Property	Type B2	
Bond coat (I/m ² ,	0.2	
min)		
Compaction	As nominated	
standard (CS)	by the	
	contractor	
Permeability	15 max	
(µm/s)		
Binder volume	14	
(%, min)		
Fatigue life @	>1 million	
600 µ strain, min	cycles	
Rut depth	2.0	
(mm, max)		
Abrasion loss	15	
(%, max)		
Binder drainage	0.3	
(%, max)		

- Metro Region of QTMR project two tenders
 - Stamford Rd 3.6km and Stafford Road 1km
 - Type B2 asphalt (SMA low permeable, 30 40mm)
 - 10 000 vpd with 10% heavy metropolitan traffic
- Existing pavement condition
 - Deflections < 0.85mm
 - No prior information on pavement design
 - No records of pavement maintenance or materials
 - Cross section gradient varied 3% to 8%
 - Cracking up to 20mm in fast lane for majority of works
 - Leaking underground water mains at east of works

1. Extent and scope of pre-treatment requirements

- Lack of as-built data or pavement design
- Services of engineering consultant engaged
- 2. Surfacing selection and mix design
 - DuraPave based on NSW experience RTA RPB125 spec
 - New binder not used previously
- 3. Quantifying risk
 - 3 to 24 mth change in defects liability / warrantee
 - Uncertainty of the underlying pavement conditions
- 4. Additional controls
 - Philosophy of building quality into the process adopted

• Pretreatment

- 50 mm & 100 mm deep patches
- Bitak stress absorbing fabric strip over
 - Minor cracks which had not been patched
 - Cracks at the bottom of excavated areas
- Full depth profiling to remove rutted asphalt
- SAMI seal placed on full width (S4.5S, 1.7I/m2, 10mm)
- Construction
 - 35mm DuraPave 10 placed on SAMI in same shift
 - Surface gritted with minus 2mm aggregate

Stafford Road – after surfacing

Durapave 10 – Stafford Road

• Mix performance

Property	Specification	Actual
Compaction standard	> 93% CV	92.6 - 94.4%CV
Permeability (µm/s)	15 max	10 – 29
Binder volume (%, min)	14	12.9 - 14
Fatigue life @ 600 µ strain, min	>1 million cycles	2.1 million cycles
Rut depth (mm, max)	2.0	1.7
Abrasion loss (%, max)	15	passed
Binder drainage (%, max)	0.3	passed

- In-situ performance
- Visual assessment
- Straight edge results
- Road roughness results
- Surface texture depth measurements

Key Learnings

- 1. Asphalt production and quality control
- 2. Transporting of mix
- 3. Treatment and road preparation
- 4. Asphalt paving
- 5. Asphalt compaction
- 6. Field testing
- 7. Balancing mix properties
- 8. Tender and contract documentation

- Performance contracts provide ideal opportunity for innovation
- Contractors allowed to develop proprietary asphalt surfacing products
- Contractors required to invest more resources in finding ways to improve their product performance
- New set of risks are presented to RA & contractor
- Need for better information on existing pavement condition, maintenance and structure
- Easier to evaluate new products on sound pavements
- Develops improved working relationships and sharing of experience and expertise

- The contributions of the authors to the paper are acknowledged:
 - Trevor Distin Boral
 - Rob McGuire Boral
 - Paul Horn Boral
 - Rob Vos AAPA
- The authors acknowledge the efforts of the staff at Boral Whinstanes and the support of QTMR in initiating performance based contracts for thin asphalt surfacings in QId