AAPA's 14th International Flexible Pavements Conference

> Sydney 25–28 September 2011

SBS Polymer Modified Base Course Mixtures for Heavy Duty Pavements André A.A. Molenaar Professor in Road Engineering Delft University of Technology

Co-Authors

Erik-Jan Scholten Kraton Polymers by Amsterdam

Martin F.C. van de Ven Marco Poot Ning Li Delft University of Technology

Background

- Usually pm binders are used in wearing course to increase resistance to permanent deformation
- Experiences on e.g. Schiphol/Amsterdam airport have shown that use of pm binders in base courses can be very benificial.

Requirements for SBS Modifications to be used in Base Courses

- High stiffness for a large load-spreading capacity. This implies that a relatively hard base bitumen should be used and hence for modification. The viscosity of the PMB should be looked at carefully when selecting SBS grade and content.
- A hard bitumen generally contains less maltenes; this means that less "solvent" is available. This should also be considered when selecting the SBS grade and content.
- The PMB should give the asphalt mixture a high resistance to cracking and permanent deformation

Mixtures Tested

- Stone asphalt concrete base course mixture
- Max grain size 22 mm
- Pen 40 bitumen used in reference mixture
- Binder content 4.6% by mass
- Void content 5%
- In pm mixtures same volume of pm binder was replacing reference binder

Test Program

- Stiffness testing using different set ups
- Monotonic tension and compression tests to determine failure envelopes
- Fatigue testing

4p Bending, ITT, Tension and Compression Tests for Stiffness Measurements

Results Stiffness Tests at 20 °C

	4PBT, 8Hz, fatigue (initial)	4PBT, 8Hz, at 50 µstrain	ITT, 8Hz, loadlevel: ¹ =800N ² =1000N	E _t at 1 %/s	E _c at 1 %/s
mixture	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
<u>599-40</u> (= 40)	8871		13368 ¹ 12513 ²	11701	7028
<u>604-41</u> (= 41)	10124	11018	13991 ¹ 12630 ²	14468	6161
<u>602-42</u> (= 42)	10801		11329 ²	12660	7714
45	8154	8502	10378 ²	10046	4029
48	9940	9544			

Tension Test

Tension Test Results at 5 °C

Tensile Strength in relation to Strain Rate and Temperature

Compression Test

Compression Test Results at 40 °C

Triaxial Test, Cohesion "C" and Angle of Internal Friction "f"

General Case

- Failure envelope can also be generated by means of tension and compression tests.
- In generalized case, s is replaced by bulk stress I₁ and t is replaced by deviator stress parameter J₂

Parameters used in the Failure Envelope Graphs

Importance of Failure Envelope

Mixtures did not differ too much in terms of stiffness

Failure Envelopes at 5 °C and Strain Rate of 0.01 %/s

Failure Envelopes at 40 °C and Strain Rate 0.01 %/s

Analyses

- Results were used as input for advanced elastovisco-plastic models
- Models were incorporated in FEM code
- 9000 load repetitions were simulated
- 2 days computation time

4 Point Bending Fatigue Test

Fatigue Test Results at 20 °C and 8 Hz

Procedure to get Limit Strain Value = Endurance Limit

- From frequency and strain level used in fatigue test, strain rate can be calculated
- From strain rate and temperature, tensile strength can be calculated
- Applied stress during fatigue test is know
- Stress ratio $R = s_t / f_t$ can be calculated
- Fatigue results can be expressed as N_{f,50} vs R
- R_{limit} can be determined

Fatigue Life in terms Stress Ratio

Limit Tensile Strain

Relationship between R_{limit} and Mix Stiffness

Endurance Limits at 8 Hz and 20 °C

Mixture	S _{m,initial} (GPa)	<i>ɛ_{limit}</i> (10⁻⁴ m/m)
599-40	8.9	50
602-42	10.8	80
604-41	10.1	75

Variable thickness; Stiffness of mixtures 40, 41 and 42; m = 0.35

E = 300 MPa; h = 300 mm; m= 0.35

E = 100 MPa; m= 0.35

Required Asphalt Thickness

Conclusions

- Mixtures with excellent mechanistic properties can be produced using specially designed polymers.
- The fatigue behaviour of asphalt mixtures can be described by means of an endurance limit.
- The endurance limit can be estimated using a series of tension tests performed at different strain rates and temperatures and mix stiffness tests. Extensive fatigue testing seems not necessary.
- Modifying asphalt mixtures with specially designed polymers can result in a significant reduction of the asphalt layer thickness.

Thank you for your attention