

TECHNICAL AND ECONOMIC BASE REQUIREMENTS FOR EFFECTIVE ASSET MANAGEMENT

Ralph Haas
University of Waterloo
Canada

PRESENTATION

- Introduction
- Life cycle management of road assets
- Essential technical requirements
- Life cycle analysis (levels, methods, applicability example)
- Leading edge technologies
- Forward looking opportunities

INTRODUCTION

Concept of pavement management 1960's

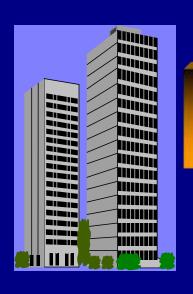
Network level PMS (ARRB)

1970

PMS Books

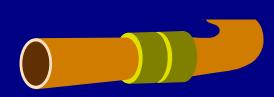
1970's

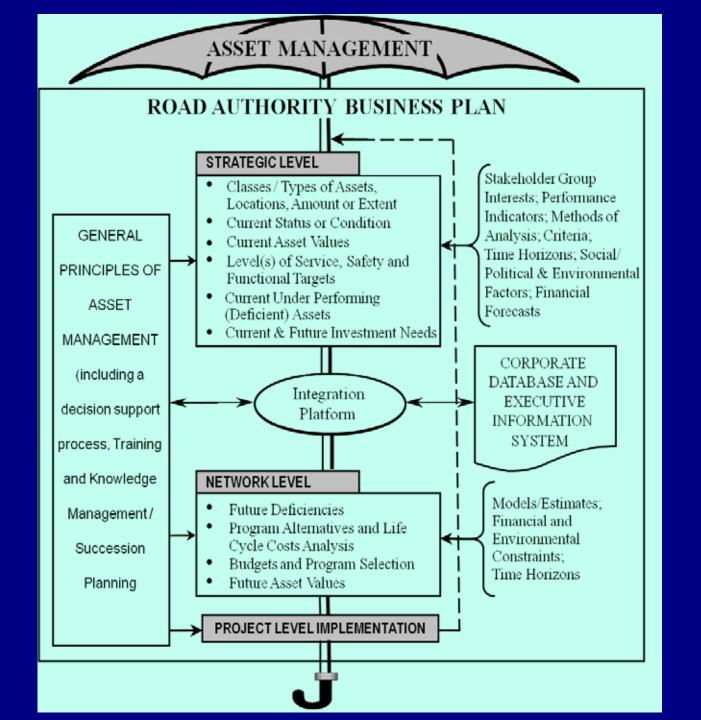
Asset management


1990's


CANADA'S ROADS

- 900,000+ km; \$150 Billion Investment
- Wide diversity of geography, climate, economic activity, resources and features
- Jurisdiction mainly provincial / territorial and municipal


LIFE CYCLE LEVELS OF ASSET MANAGEMENT

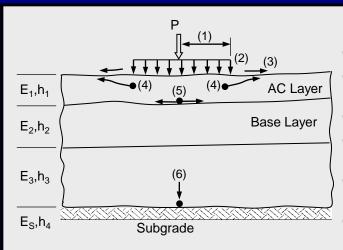


- Strategic level
- Network / system wide level

Project / site specific level

ESSENTIAL TECHNICAL REQUIREMENTS

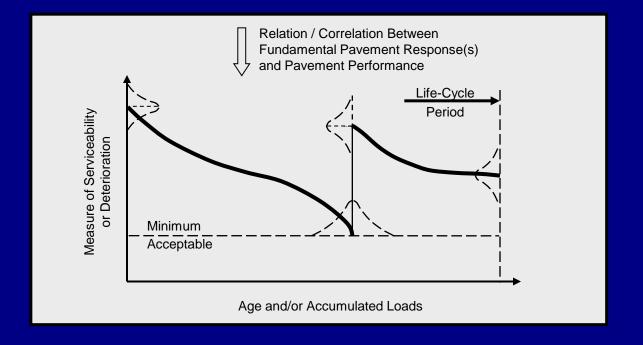
Include:


Good materials and their characterization, good design, construction and maintenance, and

Very Importantly

- Structural analysis methodology and
- Performance prediction methodology

For M-E Design


FUNDAMENTALS

P, Wheel load

- (1) Radius of loaded area
- (2) Tire pressure (may not be uniform)
- (3) Surface tensile stress or strain
- (4) Lateral shear strain or deformation
- (5) Tensile strain or stress at bottom of AC layer
- (6) Vertical stress, strain or deflection at surface of subgrade

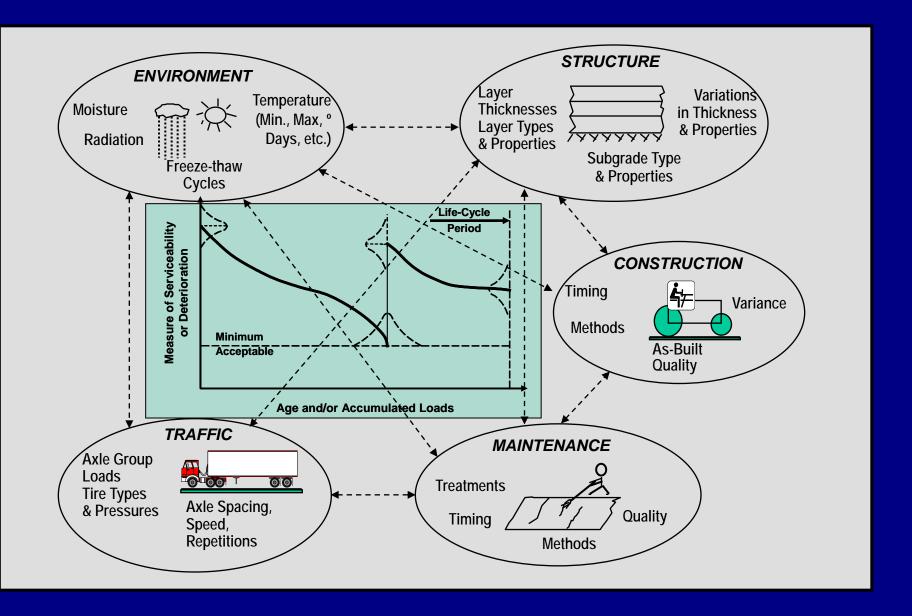
MECHANISTIC PART

EMPIRICAL PART

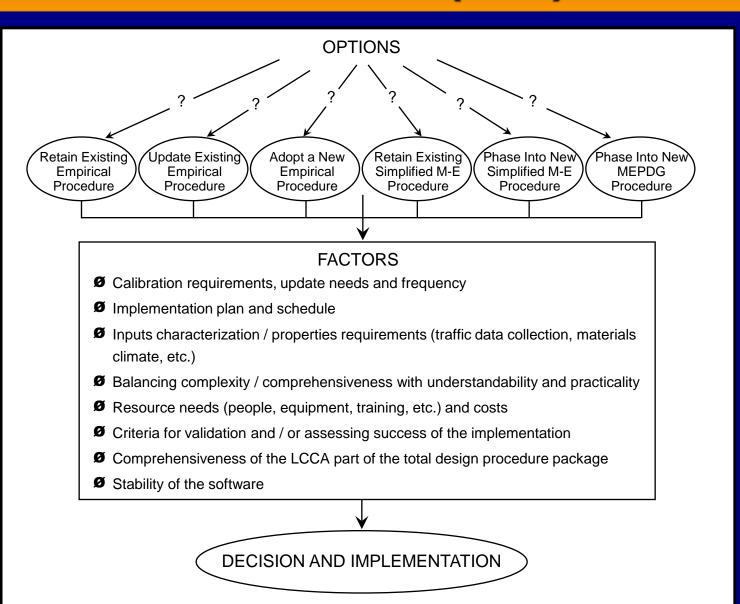
EVOLUTION OF M-E DESIGN

See Monismith's Distinguished Lecture, ISAP Symposium, Auburn, June 2004

- 1945 Burmister's elastic layer solutions
- 1962 ICAP1, Ann Arbor, "launchpad" for major fundamental contributions
- Test roads (WASHO, AASHO, Brampton) in 1950's and 1960's were instrumental in advancing state of design technology
- Now, AASHTO's 2002 MEPDG

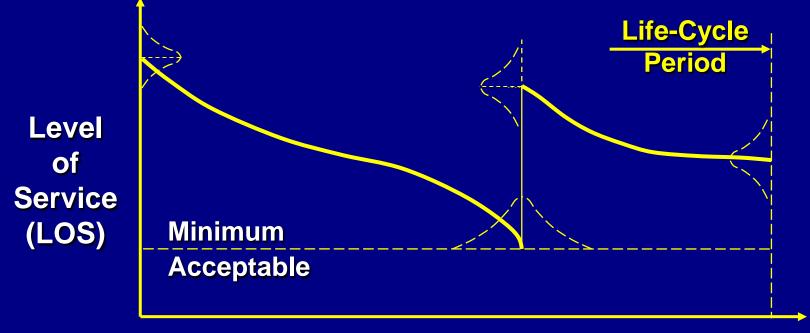

COMPUTERIZED DESIGN PACKAGES

u CHEV5L	Chevron Research	(MLE)	1969
u BISAR	Shell Int.	(MLE)	1970
u ELSYM	FHWA	(MLE)	1972
u JULEA	USACE	(MLE)	1976
u PDMAP	NCHRP 1-10A	(MLE)	1977
u CIRCLY	MINCAD, Austr.	(MLE)	1977


COMPUTERIZED DESIGN PACKAGES

u VESYS	FHWA	(MLVE)	1978
u VEROAD	Delft Univ.	(MLVE)	1996
u ILLIPAVE	U. of Illinois	(FE)	1988
□ FENLAP	U. of Nottingham	(FE)	1992
u SAPSI-M	Mich. State U. & U.C. Berkeley	(N. layers on base)	1996

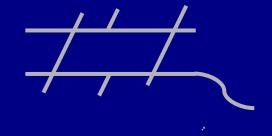
FACTORS AFFECTING PERFORMANCE



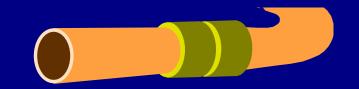
CHOOSING AN APPROPRIATE (M-E?) PROCEDURE

LIFE CYCLE ANALYSIS

Require: LOS vs Age (Performance) Model
Cost / Cash Flow Calculation (eg. PW)
Asset Value vs Age Calculation
Risk Analysis

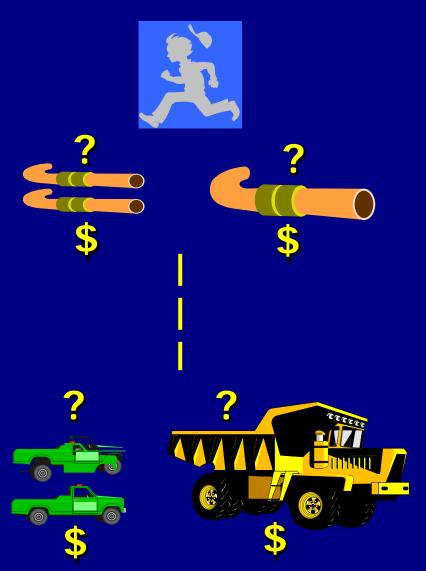


LCCA APPLICATION LEVELS


1. Strategic (Corporate Business Plan)

2. Network / System wide

3. Project / Site specific



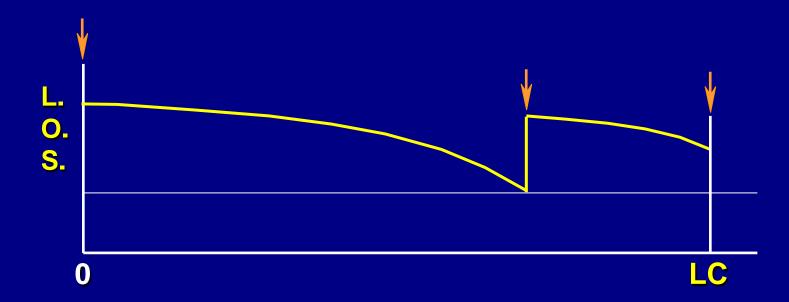
PURPOSE OF CONVENTIONAL LCCA

Compare alternative (competing) strategies, over a life cycle period, using economic principles

Identify what, where and when for best value on expenditures

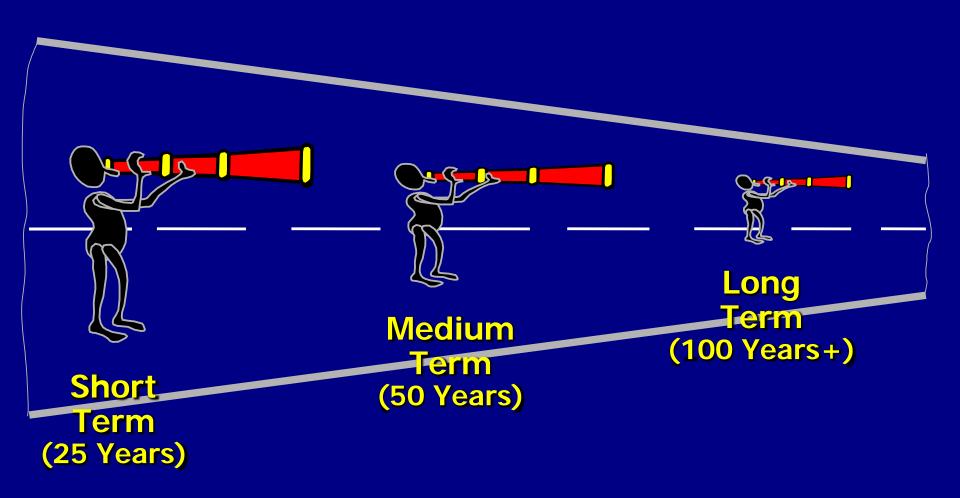
Decision support (<u>not</u> the decision itself!)

DIFFERENCE BETWEEN LCCA AND FINANCIAL PLANNING


- LCCA is used to compare alternatives and identify most cost-effective
- Financial planning (corporate level activity) is concerned with cash flows (revenues, projected expenditures, budgets and profits)

METHODS OF LCCA

- 1. Benefits / Cost Ratio
- 2. Internal Rate of Return
- 3. Equivalent Uniform Annual Costs
- 4. Cost-Effectiveness
- 5. Present Worth

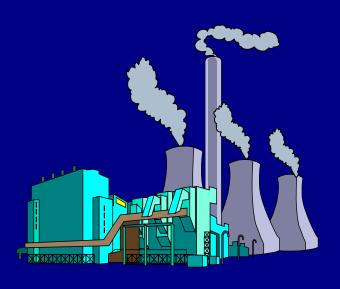

Which Method is Best for Infrastructure? (applicability, understanding, consistency)

WHAT LENGTH OF LIFE CYCLE PERIOD?

- Type of infrastructure involved (fleet vs. roads vs. buildings vs. parks)?
- Reliability of forecasts (usage, traffic, volumes, etc.) ?
- Agency or department policy ?
- Time after which discounted costs are negligible?

TIME HORIZON FOR THE FUTURE

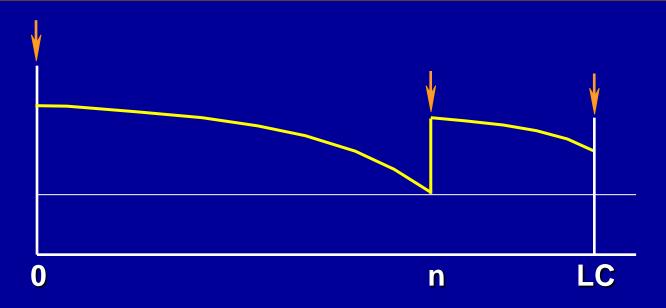
METHODS OF LCCA


- 1. Benefits / Cost Ratio
- **2. Internal Rate of Return**
 - 3. Equivalent Uniform Annual Costs
 - 4. Cost-Effectiveness
 - 5. Present Worth

Which Method is Best for Infrastructure? (applicability, understanding, consistency)

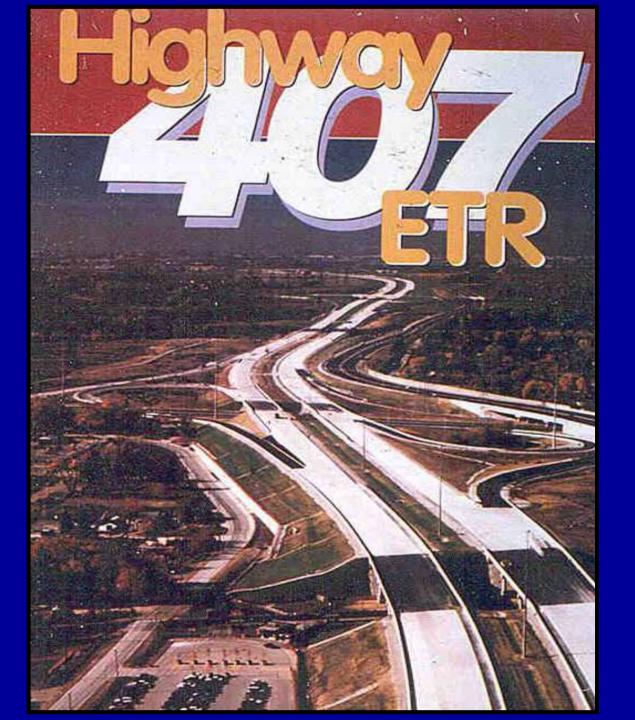
STAKEHOLDERS FOR LCCA

- 1. Public at large
- 2. Elected level
- 3. Senior administration
- 4. Technical / operating
- 5. Interest Groups
- 6. Industry
- 7. Others (Associations, Academia, etc.)


APPLICABILITY OF LCCA METHODS: HIGHWAYS

	Locals		Collectors	
	Public	Private	Public	Private
Short Term	C/E PWC AC		C/E PWC AC	
Medium Term	C/E PWC AC		C/E PWC AC	
Long Term				

APPLICABILITY OF LCCA METHODS: HIGHWAYS


	Arterials		Expressways	
	Public	Private	Public	Private
Short Term	C/E PWC AC IRR	IRR	C/E PWC IRR	IRR
Medium Term	C/E PWC AC IRR	IRR	C/E IRR	IRR
Long Term			IRR	IRR

INTERNAL RATE OF RETURN METHOD

Discount rate at which costs and benefits of an investment are equal

$$(NPV_{x1} = PWB_{x2,n} - PWC_{x1,n} = 0)$$

RATE OF RETURN EXAMPLE

- Multi-lane urban bypass
- 50 year life cycle

Financial Feasibility of an ETR?

- Long-life pavement design consisting of a heavy duty flexible pavement
- Cost estimates, traffic estimates, toll charge scheme, rehabilitation and maintenance interventions schedule

RATE OF RETURN EXAMPLE

NPV ($\$ \times 10^6$) / lane - km for i =

Design

5%

12%

20%

Flexible Pavement

16.555

2.860

- 0.361

NPV = 0 at IRR ≈ 18%

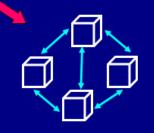
ADDITIONAL CONSIDERATIONS IN VERY LONG TERM LCA

- Resource conservation
- Future recyclability
- Risk exposure
- Long term functionality
- Environmental impacts (noise, solar absorption, energy balance)

Pavement Technologies

High Speed Data Capture

Relational Databases and GIS Platform



Network Level Optimization

Analyses and Visual Interaction

Multi-Factor Sensitivity Testing

FACTORS

- High degree of acceptance by users
- Incorporation of creativity and advanced technologies
- Major impact
- Represents a quantum advance
- New knowledge and skills created
- Basically, better way of doing things

OTHER LEADING EDGE TECHNOLOGIES

- Superpave
- LTPP Database
- MEPDG
- Recycling (RAP and RCP)
- Advancements in Engineered Materials

OTHER LEADING EDGE TECHNOLOGIES

Cont'd.

- Advancements in Construction Processes and Equipment
- MEMS in "Smart Roads"
- RFID Tags for Materials and Construction Tracking
- Emerging Nanotechnology Applications
- Permeable Asphalt and Porous Concrete Pavements

FORWARD LOOKING OPPORTUNITIES

OPPORTUNITY AREA

CHALLENGES

PROSPECTS

A. Pavement Data

- 1. Needs and Cost-Effectiveness
- 2. Collection Technologies
- 3. Quality Assurance
- 4. Storage and Integration

FORWARD LOOKING OPPORTUNITIES

OPPORTUNITY AREA

CHALLENGES

PROSPECTS

- **B.** Pavement Management
- 1. Structural Design and LCCA
- 2. Performance Modelling
- 3. Treatment Selection
- 4. Quantifying Benefits
- 5. Decision Support

FORWARD LOOKING OPPORTUNITIES

OPPORTUNITY AREA

CHALLENGES

PROSPECTS

- C. Institutional Improvements
- 1. Organizational Structure
- 2. Location (PMS and AMS)
- 3. Technology Updates
- 4. Skills and Training
- 5. P 3's

Numerous
Challenges and
Prospects for Major
Advances Range
From Short to Long
Term

CONCLUSIONS

- Effective management of road assets requires a sound technical and economic base
- Life cycle analysis is the "umbrella"
- Long-life pavement design requires mechanistic analysis linked to performance prediction
- Continuing advancements and innovations are essential

Ralph Haas PhD, P.Eng.

Dr. Haas is the Norman W. McLeod Engineering **Professor** and Distinguished Professor Emeritus at the University of Waterloo. He has lectured and consulted worldwide and authored 10 books and 400 technical papers in the areas of infrastructure, pavements and transportation. Dr. Haas is Founding Director of the University's Centre for Pavement and Transportation Technology (CPATT). contributions have been recognized by various honours and awards including the Order of Canada, Fellow of the Royal Society of Canada, Fellow of the Canadian Academy of Engineering and recipient of the Canadian Society for Civil Engineering's Sandford Fleming Award for "outstanding contributions to research and education in the field of transportation engineering".