

www.huesker.com

AAPA's 14th International Flexible Pavements Conference

A sustainable maintenance method for cracked pavements using polyester asphalt reinforcement. Increase pavement life, reduce maintenance and create sustainable pavements.

Christoph Hessing Huesker Synthetic GmbH

Asphalt reinforcement - Basics -

Cracks develop ...

Crack development due to:

- Aging of the Bitumen
- Temperature differences
- Dynamic loads (Traffic)

Wearing course			
Binder course			V
Bearing course			

à situation after years

HUESKER

HUESKER

Conventional rehabilitation

New wearing course			
Binder course			
Bearing course			

a After short time: <u>Reflective cracks</u>

Rehabilitation

Durability of the pavement will be significantly increased!

What is HaTelit[®] C 40/17

- Flexible reinforcement grid out of high modulus Polyester with a mesh size of 4 cm
- Ultralight non-woven serves as installation aid
- Grid is heat resistant up to 250°C
- Grid and non-woven are bituminous coated (excellent interlayer bonding)

- polyester is flexible and yet robust enough to withstand forces induced by supply traffic, installation of asphalt and compaction
- high modulus polyester is well compatible with the characteristics of the asphalt
- polyester can withstand cyclic loading much better than brittle materials such as glass

HUESKER

Sa V Real to the state Installation of reinforcement... ©HUESKER Synthetic GmbH, Germany

... paving ...

HUESKER

... traffic ...

... compaction ...

Compatibility of asphalt and polyester

- Coefficient of thermal expansion -

1. Ratio of the coefficient of thermal expansion α [1/K]:

HUESKER

Example reinforced concrete:

 α -Concrete: $\sim 1,3 \times 10^{-3}$ a Ratio: $\sim 1/1$ α -Steel: $\sim 1,0 \times 10^{-3}$ a Ratio: $\sim 1/1$ α -Asphalt: $\sim 6,0 \times 10^{-4}$ a Ratio: $\sim 1/7$ α -Asphalt: $\sim 6,0 \times 10^{-4}$ a Ratio: $\sim 1/7$ α -Glassfibre: $\sim 4,5 \times 10^{-6}$ a Ratio: $\sim 1/133$

à Polyester does not act as a foreign material!

Results of Performance Tests

Shear mode (+)

Bending mode

Shear mode (-)

Temperature

AERONAUTICS TECHNOLOGICAL INSTITUTE

Dynamic fatigue tests

Tests to determine the effect of HaTelit[®] in anti reflective cracking applications in Asphalt overlays

Test set up, dynamic fatigue

HUESKER

HUESKER

- (1) Overlay
- (2) blocks with opening
- (3) Elastic base (rubber)

- Material:
- Precrack:
- HaTelit position:
- Load position:
- Contact pressure:
- HaTelit[®] C 40/17 3 mm, 6mm, 9 mm directly above the crack tip Bending and shear mode 560 kN/m²

"Improvement factor"

Vf = N_{f(with Hatelit)} / N_{f(without Hatelit)}

4.60 < Vf < 6.14

Research results and FEM Simulation

HUESKER

Proof of the effectiveness

by project experience

Project Report Rehabilitation of Corso Giovanni Agnelli, Torino - Italy

Background:

- 2005 parts of the Corso Giovanni Agnelli in Torino had to be rehabilitated
- Existing pavement: Asphalt layer on concrete slabs

Corso Giovanni Agnelli, Torino

HUESKER

Corso Giovanni Agnelli, Torino

HUESKER

June 2005: Rehabilitation of Section 1

June 2005: Installation of HaTelit®

June 2005: Installation of 4 cm asphalt wearing course

July 2005, two weeks later: Rehabilitation of Section 2

HUESKER

Section 2: Installation of only 5 cm asphalt wearing course

May 2006, Ten month after the rehabilitation

HUESKER

May 2006: Cracks start to develop in unreinforced section

Condition in July 2009, 4 years after the rehabilitation

Section 1: July 2009 - 4 years after rehabilitation

HUESKER

Section 1: July 2009 - still in excellent condition - no cracks

HUESKER

Section 2: July 2009 - 4 years after rehabilitation

August 2010 - 5 years after rehabilitation

Severe cracking and damages in the <u>unreinforced</u> section **è** full overlay replacement done in August 2010.

Note: First cracks reflected already after 1 year

Reinforced section:

Excellent condition after 5 years !!!

The research and project examples presented confirm that the <u>lifetime</u> of the <u>reinforced pavements</u> can be extended by a <u>factor of 3 to 4</u>

COMPARISON OF EMBODIED ENGERGY FOR REINFORCED AND UNREINFORCED ASPHALT OVERLAYS

DATA SOURCE

Inventory of Carbon & Energy (ICE) by the University of Bath, UK

Database which is continuously updated for embodied energy and carbon coefficients for building materials.

INVENTORY OF CARBON & ENERGY (ICE)

Version 1.6a

Prof. Geoff Hammond & Craig Jones

Sustainable Energy Research Team (SERT) Department of Mechanical Engineering University of Bath, UK

This project was joint funded under the Carbon Vision Buildings program by:

EPSRO

Available from: www.bath.ac.uk/mech-eng/sert/embodied/

Peer Review Source: Hammond, G.P. and C.I. Jones, 2008, 'Embodied energy and carbon in construction materials', Proc. Instn Civil. Engrs: Energy, in press.

© University of Bath 2008

Examples of Embodied Carbon Dioxide ECO₂

Material	kg ECO ₂ / kg of material	Note			
Aggregate	0.0052	gravel or crushed rock			
Aluminium	9. 1 6	-			
Asphalt	0.076	6% binder content			
Bitumen	0.55	-			
Cement	0.74	UK weighted average			
Concrete 16/20	0.10	unreinforced			
Reinforced Concrete	0.188	high strength applications /			
RC 40/50	0.186	precast			
PVC General	3.10	-			
Polyester	1.93	derived from HDPE			
Steel	1.46	average UK recycled			
		content			
Steel	2.89	Virigin steel			
Source: ICE Inventory of Carbon & Energy V2.0					

Comparative calculation of ECO₂ for reinforced and unreinforced asphalt overlays based on materials used

Material	Material consumption	kg embodied CO ₂ per kg of material	embodied CO ₂ in kg / m²	
			unreinforced	HaTelit [®] reinforced

Conclusions

- PES asphalt reinforcement grids with bituminous coating significantly delay reflective cracking
- Project experience and research presented shows that pavement life can be increased by a factor of 3 - 4 by using HaTelit[®] asphalt reinforcement
- Unreinforced pavement rehabilitation: 1.93 kg ECO₂ / m² / year design life
- HaTelit[®] reinforced pavement rehabilitation: 0.71 kg ECO_2 / m² / year design life

Conclusions

- Significant saving in Embodied Carbon Dioxide of 63 % based on material consumption
- The application of HaTelit[®] asphalt reinforcement saves resources by extending pavement life and thus is a key to sustainable maintenance methods