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ABSTRACT 
 

There is a need to identify a mechanical parameter measured from standardized test that is sensitive to polymer 

modification of binder. Presence of such parameters would enable an empirical evaluation of the impact of 

modification of the binder on mixture and eventually on pavement performance. Superpave specifications were 

primarily designed for neat binders. Researchers have determined that the tests specified in Superpave are not 

suitable for characterization of polymer modified binders. Asphalts modified with different polymers can behave 

very differently even when they have the same performance grade, as determined by the Superpave specifications. 

The objective of this study is to correlate the different quantities of polymer modification to mechanical properties of 

the binder. In this study, the amount of modification was measured in terms of absorbance as measured by Fourier 

Transform Infrared Spectrometer. The absorbance was correlated to non-recoverable creep compliance and 

G*sin(delta) for different types of polymers and at different polymer concentration. The information about the 

chemical composition of different polymer modified binder and how a particular chemical component modifies or 

affects a particular mechanical property of the binder, can help the asphalt manufacturer in developing the most 

cost effective product to meet the specifications. 
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1. INTRODUCTION 

1.1 Background 

 
Currently, the Superpave Performance Grade (PG) binder specification, AASHTO M-320, is used throughout the 

United States to grade asphalt binders (D’Angelo 2009).  This asphalt binder specification was derived as part of a 

Strategic Highway Research Program (SHRP) project and was based primarily on the study of neat asphalt binders 

with no polymer additives.  The applicability of this specification to the polymer modified asphalt binders has long 

raised concerns from both industry and state highway agencies.  The challenges with the Superpave high 

temperature specification parameter in Table 1 of AASHTO-M320, G*/sin δ, to correctly grade the superior field 

performance of modified asphalt binders have been demonstrated by several researchers (D’Angelo 2009).  

Therefore, as a replacement for the existing high temperature binder test (G*/sin δ), the FHWA and the Asphalt 

Binder Expert Task Group developed the multiple stress creep and recovery (MSCR) test.  This test is used to 

characterize the asphalt binder high temperature properties at which the pavement performs in the field, referred to 

as the environmental use temperatures.  As such, many state DOTs have implemented additional tests called 

Superpave PG Plus or SHRP Plus tests in an attempt to ensure that a modifier is included in the binder.  The SHRP 

Plus tests do not relate to performance but only indicate the presence of a particular modifier in the binder.   

At present, the state of New Jersey requires the use of styrene-butadiene or styrene-butadiene-styrene 

(SBS) formulations.  In light of the polymer shortages circa 2008, the New Jersey Department of Transportation (NJ 

DOT) would like to broaden the options for use of polymers and rubbers in the binder.  Before NJ DOT can allow 

the use of other modifiers, there is a need to first determine whether parameters such as non-recoverable creep 

compliance (Jnr) and the recoveries determined from MSCR and elastic recovery (ER) are sensitive to the polymer 

or rubber modification of the binder.   

 

Table 1: Traffic Grading Based on Jnr Values 

RTFO DSR 

Jnr (3.2 kPa) T (ºC) Traffic ESAL 

≤ 4.0 64 Standard (S) 
<10 million 

≤ 2.0 64 Heavy (H) 
10-30 million 

≤ 1.0 64 Very Heavy (V) 
>30 million 

≤ 0.5 64 Extremely Heavy (E) 
>30 million and standing traffic 

 

1.2 Goal 

 
The goal of the study is to gain a better understanding and  to quantify the performance of different polymer modified 

binders under standard Superpave, PG Plus, and MSCR tests. 

1.3 Significance Of Study 

 
The study will assist in determining how a certain modification, such as ethylene terpolymer, styrene-Butadiene-

styrene, or Polyphosphoric acid PPA), is sensitive to parameters that were measured from these test methods.  The 

results from the study will allow industry to progress in identifying appropriate test methods or parameters for 

characterizing polymer modified binders.   

1.4 Research Approach 

 
The research approach to achieve the stated goal consists of: 

1. Conducting Superpave tests and determining the continuous grade of binder. 

2. Conducting MSCR at PG grade temperature of the base binder, and ER test at 25C 
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3. Conducting analysis to identify parameters that can be potentially considered for binder specifications. 

4. A) Correlating recovery from MSCR with ER. 

B) Correlating phase angle with recovery from MSCR and ER. 

2. LITERATURE REVIEW 

 
The polymers used for bitumen modification are divided into two groups, namely elastomers and plastomers (Airey 

2003).  Approximately 75% of modified binders are classified as elastomers, 15% as plastomers, and 10% either 

rubber or miscellaneously modified (Airey 2003).  Elastomers used in bitumen modification are SBS, natural rubber, 

reclaimed tire rubber/crumb rubber, polybutadiene, polyisoprene, isobutene isoprene copolymer, polychloroprene, 

and styrene butadiene rubber (SBR) (Airey 2003).  In the elastomeric group, styrenic block copolymers like SBS 

have shown greatest potential when blended with bitumen.  The polymers that are classified as plastomers or 

thermoplastics are ethyl-vinyl-acetate (EVA), polyvinyl chloride (PVC), ethylene propylene (EPDM), ethylene 

acrylate copolymer, and ethylene butyl acrylate (EBA)
 
(Airey 2003).   

 

SBS is mechanically dispersed in the molten asphalt under high shear for modification.  The degree of SBS 

modification is a function of bitumen source, bitumen-polymer compatibility, crude source, polymer chemistry, and 

polymer concentration, with the higher polymer concentrations in high aromatic content bitumen producing a highly 

elastic network which increases the viscosity, complex modulus, and elastic response of the PMA (Polymer 

Modified Asphalt) especially at high service temperatures
 
(Sengoz 2007). 

 

Some SBS modification increases softening point and viscosity, which indicates increased stiffness of the PMA’s.  

The high viscosity causes the mixing, laying and compaction of the mixture to be more difficult
 
(Polacco 2006).  Lu 

et al. (1998) observed that SBS polymers improved low-temperature properties of bitumen.  The degree of 

improvement increased with SBS content and was influenced slightly by SBS structure.  

 

According to Gonzalez et al. (2004), polyethylene and EVA are good modifiers to improve permanent deformation 

and thermal cracking.  According to AASHTO T315, the temperature at which G*/sinδ = 1 implies that this is the 

maximum temperature where the binder can have a good viscoelastic performance on the pavement.  In their study, 

the maximum temperature, where G*/sinδ = 1, was improved when copolymers of EVA were used as a modifier 

thus giving good results.  The maximum temperature was even better, giving best results, with 3% of recycled EVA 

mixed with pure bitumen.  A decrease in stiffness of binder at low temperatures is desirable as it avoids cracking but 

a high stiffness is beneficial at high temperatures to avoid viscous flow of the binder.  

 

3. TESTING METHODS 

 
Asphalt binders are required to meet current Superpave binder specifications (AASHTO M-320 2001).  The 

Superpave Performance Grade (PG) system focuses on climatic effects, construction, aging (during construction and 

in-service), traffic speed, and traffic volume.  The behavior of asphalt binders depends on temperature, time of 

loading, and aging and properties related to pavement performance are based on rheology.  Tests used in PG 

specifications are Rotational Viscosity (RV) for construction (workability), Dynamic Shear Rheometer (DSR) for 

rutting and fatigue, and Bending Beam Rheometer (BBR) for thermal cracking. 

 

Superpave Performance Grade (PG), AASHTO M-320, specifications used today to categorize asphalt binders are 

based on unmodified asphalt binders.  AASHTO M-320 includes original DSR, RTFO DSR, PAV DSR, BBR, and 

RV.  Since the introduction of polymer modifiers, Superpave PG grade has not been able to adequately characterize 

the performance of modified binders in the field.  In response to this challenge, most states have employed 

Superpave Plus tests to ensure the presence of polymer modification.  Superpave Plus tests may include Elastic 

Recovery (ER) ASTM D113-86, Force Ductility AASHTO T-300, and Multiple Stress Creep Recovery 

(MSCR),developed by FHWA.  The NJ DOT currently uses ER.
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3.1 Multiple Stress Creep Recovery 

 
MSCR may potentially be able to provide a solution to address issues with the ER test and the DSR  test for rutting 

analysis.  DSR uses the AASHTO M-320 specification G*/sin(δ) to correlate rutting resistance.  AASHTO M-320 is 

based on homogeneous, isotropic binders that include particles less than 0.25 mm in diameter that perform in the 

linear viscoelastic region.  This is problematic because rutting is a plastic (nonlinear) deformation of pavement 

material.  The parameters of MSCR are % recovery and non-recoverable creep compliance (Jnr).  Jnr is equal to the 

non-recoverable shear strain divided by the applied shear stress.  The MSCR test uses RTFO-aged binders run on the 

DSR machine.  The test is performed by applying a shear stress of 0.1 kPa for one second and releasing the load 

(recovery) for nine seconds over 10 cycles, followed by the same procedure using a shear stress of 3.2 kPa (Figure 

1).  The cyclic loading at different stress levels describes properties of the binder in the nonlinear region. 

 
Figure 1: Typical MSCR Test Plot (AASHTO TP70, 2001) 

3.2 MSCR Traffic Grading 

 
After completing MSCR testing of numerous binders, each binder could then be classified for traffic grading.  Using 

the RDSR results at 64°C, various binders were labeled as PG 64X.  The X would be replaced by an E, V, H, or S, 

which symbolizes traffic levels of extremely heavy, very heavy, heavy or standard traffic respectively.  In order to 

meet the criteria for the different traffic grades, Table 1 was generated and presents the Jnr that corresponds to the 

level of traffic loading.  

 
3.3 Elastic Recovery 

 
Elastic Recovery is performed using a brass mold to form an asphalt binder briquette that is submerged in a 25°C 

water bath and connected to an elongation device.  The ER procedure includes elongating specimens to 20 cm, 

cutting at the midpoint of the binder specimen, and observing the percent recovery obtained.   

4. MIXING STUDY 

 
A polymer mixing study was initiated to better understand the relationship between polymer type and concentration 

to the various PG Plus specifications.  The sensitivity of these tests (MSCR, Elastic Recovery, Force Ductility, and 

DSR phase angle) to polymer type and concentration could be understood if we could control these parameters.  The 

authors adopted a procedure provided by Refinery 1 Energy for blending SBS.  The author acknowledges that this 

particular mixing procedure is not universal and may be different depending on polymer type.  The procedure used 

for creating the mixes is detailed below: 

1. Heat a quart of the chosen base binder to 190°C,  

2. Begin high shear mixer and maintain 2500-3500 rpm, 

3. Begin slowly adding the polymer (no more than 5g/min) after 20 minutes, 
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4. Continue mixing for two hours Once all the polymer is added and maintain the temperature at 190°C at a 

speed near 3000 rpm, and 

5. Run an original DSR, if this is the only modifier being added, to find the grade of the binder.   

 
If PPA is also being added, follow steps 6 through 8 

 

6. Add PPA and continue mixing for 30 minutes, maintaining the temperature at 190°C and a speed around 

3000 rpm, 

7. Run an original DSR, then cover the can loosely and place in an oven at 163°C overnight, and 

8. Test the sample using original DSR at the target temperature grade. If this is more than 3% different than 

the first DSR results, put sample back in the oven and continue testing at 30 minutes intervals until there is 

a difference of less than 3%.   

5. EXPERIMENTAL DESIGN 

 
The experimental design, Table 2, consists of a number of Superpave, PG Plus, and MSCR tests.  The X’s indicate 

the number of replicates completed for each test.  The material tested in the laboratory consisted of unmodified base 

binders (Refinery 1 PG 64-22, Refinery 4 (R4) 937 PG 64-22, and Refinery 1 70-22).  Modified binders were mixed 

in-house and obtained from refineries such as Refinery 1 (R1), Refinery 2 (R2), and Refinery 3 (R3), as well as 

some from unknown sources.  Those from unknown sources are labeled with their PG grade and a characteristic 

name.  Binders of the same PG grade from the same refinery but different tanks were tested separately.   

 

Table 2: Binder Tests & Sources (X: Number of Replicates) 

Binder Source AASHTO M-320 ER MSCR 

R1 64-22 Refinery 1 XX XX 

 R1 70-22 Refinery 1 XX XX XX 

Kraton R1 BD Refinery 1 XX XX XX 

R1 76-22 Refinery 1 XX XX XX 

R1 76-22 Tank 1007 Refinery 1 XX XX XX 

R2 76-22 Refinery 2 XX XX XX 

R3 76-28 Refinery 3 XX XX XX 

R1 82-22 Refinery 1 XX XX 

 R1 82-22 Tank 73 Refinery 1 XX XX XX 

R1 Stavola Refinery 1 XX XX XX 

CRM v=2900 NJDOT XX XX 

 CRM v=3200 NJDOT XX XX XX 

R4 937, 1.5% K In-House XX XX XX 

R1 64-22, 1.5% E, 0.8% PPA In-House XX XX XX 

R1 64-22, 1.5% E In-House XX XX 

 R1 64-22, 2.5% E In-House XX XX XX 

R1 64-22, 5% E In-House XX 

 

XX 

R1 64, 1% K In-House XX 

 

XX 
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R1 64, 1.5% K In-House XX XX 

 R1 64, 2% K In-House XX 

  R1 64, 3% K In-House XX XX XX 

R1 64, 4.5% K In-House XX XX XX 

R1 64, 5% K In-House XX XX XX 

R1 64, 7% K In-House XX XX XX 

 

Three binders modified with rubbers were included in this group: the crumb rubber with viscosity of 2900 Pa-s, the 

crumb rubber with viscosity of 3200 Pa-s, and the Refinery 1 Stavola.  Two bridgedecks were also included: the 

Refinery 1 bridgedeck using SBS polymer as a modifier, and the R3 76-28.  The twelve binders that make up the 

end of the table were all mixed in-house as part of a mixing study.  Only one of these mixes was created from 

Refinery 4 937, the rest began as Refinery 1 PG 64-22.  The three polymer modifiers used were SBS D1101 (SBS), 

ethylene terpolymer (RET), and PPA (polyphosphoric acid).   

 

The binders were evaluated at the test temperature of the base binder grade that they were modified from.  All 

experiments followed a controlled single mixing methodology.  All of the in-house modified binders were made by 

adding polymers to PG 64-22.  However, in the cases of modified binders that were obtained directly from the 

refineries, the Performance Grades of base binders were not known.   

6. RESULTS  

6.1 Multiple Stress Creep Recovery  

 
In order for binders to be considered for research purposes, they must have two acceptable test replicates.  A total of 

26 binders were included in this document, 12 of which were mixed in-house.  The experimental plan is tabulated in 

Table 3 along with the traffic grade for the binders tested.  

 
Table 3  Modified Performance Grading of Binder Based on AASHTO MP19 

Binder Jnr (1/kPa) (3.2 kPa) PG 64-YY 

R1 70-22 0.05 Extreme (E) 

Kraton R1 BD 0.01 Extreme (E) 

R1 76-22 0.18 Extreme (E) 

R1 76-22  

TANK 1007 0.53 Very Heavy (V) 

R2 76-22 0.11 Extreme (E) 

R3 76-28 0.07 Extreme (E) 

76-28 Rt 295 0.23 Extreme (E) 

R1 82-22 Tank 73 0.13 Extreme (E) 

R1 Stavola 0.13 Extreme (E) 

CRM v=3200 0.09 Extreme (E) 

R4 937, K 3.31 Standard (S) 

R1 64-22, 1.5% E, 0.8% PPA 0.34 Extreme (E) 
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R1 64-22, 1.5% E 1.18 Heavy (H) 

R1 64-22, 2.5% E  1.16 Heavy (H) 

R1 64-22, 5% E  0.63 Very Heavy (V) 

R1 64, 1.5% K 1.49 Heavy (H) 

R1 64, 3% K 0.75 Very Heavy (V) 

R1 64, 4.5% K 0.33 Extreme (E) 

R1 64, 5% K 0.63 Very Heavy (V) 

R1 64, 7% K 0.29 Extreme (E) 

76-22 3/10/10 0.35 Extreme (E) 

 

6.2 Non-Recoverable Compliance, Elastic Recovery, and Percent Recovery Data 

 
Figure 3 shows the non-recoverable compliance for similar performance grades of binder.  At a performance grade 

of 70°C, all binders had a Jnr between 1.00 and 1.50.  Similarly, for binders with a Performance Grade of 82°C, the 

binders fell between a Jnr of 0.00 and 0.50.  From this, it is evident that binders are characterized relatively equally 

using Jnr results and Performance Grade.  Jnr also decreased as the performance grade of a binder was increased.   

 

 
Figure 2: Jnr (3.2 kPa) at 64°C 

Figure 4 shows the Elastic Recovery results and the data indicates that as the Performance Grade increased, the 

Elastic Recovery generally increased.  However, at higher Performance Grades, binder properties did not vary 

regardless of the base binder or polymer percentage.  
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Figure 3: Elastic Recovery at 25°C 

 
7. ANALYSIS 

7.1 Effect of Polymer Modification 

 
The addition of a polymer, at different percentages, had an effect on the Elastic Recovery of the binder.  As seen 

with R1 64-22, with the addition of Kraton polymer from zero to 3%, there was a steady increase in Elastic 

Recovery as shown in Figure 8. 

 

 
Figure 4: Elastic Recovery at 25°C for Kraton Modified Binders 

However, once the polymer level reached 3% Kraton, the Elastic Recovery remained relatively constant all the way 

to 7% Kraton.  There was actually a drop in Elastic Recovery from 3% to 4.5% Kraton.  Finally, it seems that ER 

does not adequately characterize the effects of the addition of PPA.  The R1 64-22 with 1.5% Elvaloy increased in 

Elastic Recovery as the polymer percentage increased to 2.5% as shown in Figure 9.  
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Figure 5: Elastic Recovery at 25°C for Elvaloy and PPA Modified Binders 

Once the 0.8% PPA was added to the 1.5% Elvaloy, the Performance Grade increased, however the Elastic 

Recovery decreased in comparison to the R1 64-22 with 2.5% Elvaloy.  The percent recovery showed a much 

greater variation within a Performance Grade when compared to the Elastic Recovery.  As Figure 10 shows, the 

percent recovery did not consistently increase as the Performance Grade increased; however, there was a large 

variation of percent recovery within a Performance Grade.  

  

 
Figure 6: Percent Recovery from MSCR at 64°C 

The addition of the 0.8% PPA to the R1 64-22 with 1.5% Elvaloy is better characterized when examining %Re 

measured from MSCR.  As Figure 11 indicates, the percent recovery increased in this circumstance compared to the 

R1 64-22 with only 1.5 and 2.5% Elvaloy. 
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Figure7: Percent Recovery at 64°C for Elvaloy and PPA Modified Binders 

The percent recovery from MSCR increased with the addition of the 0.8% PPA, which is consistent with the trend of 

increase in the Performance Grade of the binders.  The trend is accurate when examining R1 64-22 with various 

percentages of Kraton.  As the percentage is increased from 0 to 3%, the Performance Grade jumps two temperature 

levels and the percent recovery increases.  The Performance Grade once again increased from 3 to 4.5% Kraton, , 

but only by one temperature level.  At the high Performance Grade of 82°C, the polymer did not elevate to another 

temperature level, as shown with the increase of 4.5 to 7% Kraton.  With the same binders, percent recovery 

remained relatively constant after it was increased from the 3% modification as shown in Figure 12.  

 

 
Figure 8: Percent Recovery at 64°C for Kraton Modified Binders 

The data imply that at a certain concentration of polymer, there appears to be a plateau in both Performance Grade 

and effect of additional polymer.  The base binders of Refinery 1 and R2 also yielded dramatically different %Re at 

the Performance Grade of 76°C.  The recovery for the R1 76-22 was much less than the recovery of R2 76-22; this 

was also apparent when examining ER results.  A notable difference between the Elastic Recovery results and 

percent recovery results is the variation within a Performance Grade.  As previously mentioned, ER was relatively 

constant in each Performance Grade.  However, percent recovery from MSCR showed significant differences within 

each Performance Grade.  

8. SUMMARY OF FINDINGS 

 
The summary of findings based on the study conducted to date follows: 

1. MSCR parameters were more sensitive than Elastic Recovery.  MSCR revealed Jnr and percent recovery 

differences within Performance Grades. 

2. Binders that passed the Elastic Recovery criterion of 60% for NJ DOT did not necessarily show that elastic 

response is generated primarily from elastomers. 

3. Phase angle at 64ºC decreased with decreasing Jnr. 
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4. The binders that exhibited forty percent recovery or greater appeared to be above the MSCR recovery 

curve.  The same binders also passed the phase angle criterion of 75ºC that exists in much of the 

southeastern U.S. 

5. Binders that have low percent recovery at the 64°C temperature, appear to also have decreasing recoveries 

in relation to an increasing Jnr.  

6. Binders appeared to be stiffer {high G*/sin(δ)} at low strains, but a similar effect was not observed in Jnr . 

 

9. CONCLUSIONS  

 
The conclusions based on the summary of findings are as follows: 

1. The percent recovery from MSCR appears to be more sensitive to binder modification, such as PPA, than 

the elastic recovery at 25C.   

2. The continuous high temperature grade and phase angle are not sensitive to the non-recoverable creep 

compliance.   

3. Polymer modified binders of similar grades are performing differently in MSCR tests.  This is largely 

attributed to Superpave being performed at lower strains.   

4. The influence of polymer modification on binder properties was dependent on the properties of the base 

binder. 

5. The percent recovery parameter from MSCR appears to rank consistently with the phase angle.  It also 

appeared to be consistent with the MSCR curve. 

6. The percent recovery from MSCR along with non-recoverable compliance has the potential of being used 

as specification for polymer modified binders. 
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