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ABSTRACT 
 
The lack of interface bonding between asphalt layers may lead to several premature distresses of which slippage, 

cracking, delamination and distortion are most prominent.  Undetected delamination can ultimately result in the 

peeling away of thin asphalt overlays from the surface of the roadway. Further progression of delamination may 

result in stripping of the lower layers due to the intrusion of moisture. Many NDT methods, which included the 

Ground Penetrating Radar, Thermography, sonic/seismic and impulse response, are evaluated for different 

pavement problems. 

 

To determine delamination, several debonding agents were placed between asphalt lifts at predetermined 

locations to simulate different degrees of debondingin this study.  From those locations sonic/seismic and 

impulse methods and their results are discussed in this paper. 

 

Keywords:Pavement, NDT methods, Sonic/seismic methods, Impact methods, Delamination 



 

5th Eurasphalt & Eurobitume Congress, 13-15th June 2012, Istanbul 

1 INTRODUCTION 
 

A poor bond between pavement layers may lead to several premature distresses of which slippage, cracking, 

delamination and distortion are most prominent. The delaminated layers and their associated cracks may require 

frequent maintenance, and may lead to premature need for major rehabilitation. For those reasons, rapid 

detection of delamination with nondestructive test (NDT) devices is highly desirable.  NDT methods provide 

quick acquisition of test data which are reliable and consistent test technique and with a number of data sets 

provide statistical reliability.   

 

In this paper, the feasibility of estimating the presence and extent of hot mix asphalt (HMA) delamination with 

two NDT methods are presented. NDT methods were evaluated on a pavement section specifically constructed 

to simulate different degrees of debonding. The applicability of NDT methods and their detection potentials were 

evaluated and summarized in this study. 

 

2 NDT METHODS USED IN THIS STUDY 
 

Several NDT technologies have been developed that could potentially be employed for detection of delamination 

within HMA layers [1]. Since most of these technologies have been developed for detecting the delamination in 

concrete slabs, several complications, such as thinner HMA lifts, more material heterogeneity, presence of tack 

coats and changes in temperature, are encountered when applying these methods to HMA. The five most 

promising methods are described below. 

 

Ground Penetrating Radar (GPR): GPR uses electromagnetic pulses to characterize subsurface materials based 

on changes in electromagnetic properties of the layers. The application of GPR in detecting delamination has 

been previously found to be questionable [2]. Even at frequencies of 1 to 2 GHz, the GPR wavelengths in asphalt 

are too long to resolve the thin delamination. Numerical modeling of the GPR signals for the case of delaminated 

asphalt was carried out by Smith and Scullion [3]. The results indicated that the detection of an air-filled 

delamination of 0.5 cm or water-filled delamination of 0.25 cm and larger at a minimum depth of 5 cm may be 

detected using a 2.5 GHz GPR antenna. The maximum speed for data acquisition suggested was 16.09 km/h. 

 

Impulse Response (IR): An impulsive loading is applied to the pavement surface with an instrumented hammer 

and the vertical displacement with a geophone is measured. If structural distresses are present in the form of loss 

of adhesion between layers, this is reflected in the dynamic response of the pavement structure. Using a simple 

modal analysis [4], the bonding condition of two adjacent layers can be obtained. Kruntcheva[5] successfully 

implemented IR for detection of debonding in controlled test sections.  

 

Thermography: Infrared Thermography measures temperature distributions across the surface of the pavement to 

detect the presence of shallow subsurface flaws in HMA. Stroup-Gardiner [6] showed its effectiveness for large 

area inspections, but also its limitations.  

 

Ultrasonic Surface Waves (USW): USW is a seismic-based methodology, in which a dispersion curve (variation 

in the velocity with wavelength) is obtained. In the USW method, the surface or Rayleigh wave velocity of the 

top layer is measured without an inversion algorithm that can be converted to modulus [7]. This method has been 

successfully used to detect HMA stripping [8]. The Portable Seismic Property Analyzer (PSPA) that applies the 

USW in real time was used in this study. 

 

Falling Weight Deflectometer (FWD): The FWD device consists of an impact loading mechanism and a set of 

sensors to measure vertical surface displacements at the load location and at specified offsets from the load.  The 

loading component delivers a transient load to the pavement surface and the sensors measure the surface 

deflection at the specified locations.  A number of studies have been carried out to assess the suitability of the 

FWD for assessing the delamination of HMA layers. Intuitively, higher deflections are expected, if poor bond 

between asphalt layers exists. A new backcalculation process for assessing the bond condition between the HMA 

layers using FWD deflections has shown some promising results [9]. 

 

3 CASE STUDY 
 

Ten different 2.7 m by 3 m sections were constructed (see Figure 1a).  Three transition zones were also 

incorporated to minimize the construction variability.  The pavement cross-section consisted of a sandy-silt 

subgrade covered with a 200 mm thick HMA placed in three lifts.  The bottom lift consisted of about 75 mm of a 

coarse mix whereas the middle lift consisted of 63 mm of a fine mix.  The top lift of Sections 1 through 5 
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consisted of a coarse mix and Sections 6 through 10 a fine mix. The plan view of each section with prepared 

debonded areas and test locations are shown in Figure 1b. For this study, the focus was more on the large 1.2 m 

by 2.7 m debonded areas. Shear tests were conducted on prepared HMA specimens to select different materials 

to be used as debonding agents (see [1] for details). Clay slurry, talcum powder, grease and thin paper soaked in 

motor oil were considered. A tack coat at a rate of 0.7 liter/m
2
 was used as a control section. A severely 

debonded area was reproduced in the transition area by placing a 1.2 m by 1.2 m piece of thick corrugated 

cardboard and a thick layer of clay slurry of 1.2 m by 1.8 m as shown in Figure 1a. Shallow and deep debondings 

correspond to the debonding between the top two lifts (at a depth of 63 mm) and bottom two lifts (a depth of 125 

mm), respectively. 
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Figure 1. Schematic of section constructed and location of test points. 

 

4 PRESENTATION OF RESULTS 
 

The PSPA USW detailed analysis can be found in Celaya et al. [1].  The variation in the phase velocity with 

wavelength is called a dispersion curve.  For the intact area dispersion curve is fairly uniform, whereas for 

damaged points, a sharp decrease in modulus below the location of the damage is typically evident as can be 

seen in Figure 2.  In this study, dispersion curves of Line 4 along ten sections are presented in Figure 3 with 

prepared debonded areas marked when applicable.  Average modulus and standard deviation of control sections 

were used to describe the effectiveness of USW.  Debonded areas generally exhibited lower moduli as 

anticipated.  However, some partially debonded sections exhibited normal moduli for both mixes.  Also, deep 

debonding was not as well-defined as for the similar sections with coarse surface HMA. 

 

The temperature adjusted moduli were compared using color-coding in Figure 4. The average modulus (Econtrol) 

and standard deviation (σcontrol) of each control section (1 and 6) were used as reference. Modulus above the 

average minus one standard deviation are colored as green, between average minus one and average minus two 

standard deviations are highlighted in yellow, and less than average minus two standard deviations are colored as 

red.  In this case most of the fully debonded points along lines 4 and 5 were identified for both mixes.  Some 

partially debonded areas showed indication of marginally less stiff (marked as yellow), but some were found to 

be intact (green) or substantially less stiff (red). Most of the intact locations (line 1 and sections 1 and 6) were 

identified as intact.  Since HMA modulus is temperature dependent, the values presented were converted to a 

reference temperature of 77ºF using [10]:    
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 a) Intact b) Severe Debonding 

Figure 2. Dispersion Curve Results with PSPA on Small Scale Study 
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Figure 3. Dispersion curve results for Line 4. 
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b) Sections 6 to 10 

Figure 4. Statistical Analysis of PSPA Modulus on Small Scale Study 

 

Deflections measured for the seven geophones at an intact and the severely debonded locations are shown in 

Figure 5.  Deflections of Geophones 1 and 2 (labeled as SD1 and SD2) are considerably greater at the severe 

debonded location.  For the other five geophones, differences between intact and deboned deflections are small.    
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The variation in the deflection along the ten sections is shown in Figure 6 using the criteria used for the PSPA 

test.  The criteria presented in Table 3.2 were used to color code the graph.  In this case because higher 

deflections correspond to less stiff material, standard deviations were added instead of subtracted.   
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Figure 5. Deflection Examples from FWD on Small Scale Study 
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Figure 6. Statistical Analysis of FWD Deflection on Small Scale Study 

 

5 CONCLUSIONS 
 

Two NDT methods that have the potential to detect the debonding of the HMA were evaluated on a constructed 

section with various levels of debonding at different depths and with different asphalt mixes. Based on the 

outcome of the study, the following conclusions could be drawn (see [1] for details): 

 USW, as implemented in the PSPA, could detect 53% of the debonded areas. PSPA could detect the shallow 

debonding (both partial and full) the best. 

 The FWD, could detect about 46% of the debonded areas based on the backcalculation of the modulus of the 

HMA layer. 

 USW results require temperature adjustments for their successful usage. 

 Data collection can be carried out in less than 2 minutes with two devices.   

 Two devices provide the analysis in real time.   

 The FWD analysis is rather straight forward, but an experienced analyst is needed to minimize the 

uncertainty in the backcalculation. 
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