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ABSTRACT 
 
The HDM-4 model is capable of monitoring the condition of the pavement depending on multiple parameters and of 

designing and completing repair accordingly. This occurs based on the setting of degrading curves for damage and 

deformation in the pavement structure.  Repair and maintenance work is strictly linked to the courses; of course this 

means a need for funding. If the degrading curves are not set correctly the need for repair may arise regardless of 

whether the pavement actually is in a condition requiring such repair.    

One of the main factors affecting pavement degrading and, therefore, the behaviour of the HDM-4 model, is the so-

called structural number (SN). There are many methods used globally to determine the SN value, based on the quantity 

and quality of the data available which might include: elasticity modules for the materials, pavement structure layer 

thicknesses, output from the back calculation programs,  output from the FWD device or design characteristics of the 

road.  

In the Czech Republic substantial inconsistencies have been detected in the current methodology for the coefficient 

determination; therefore, the expression of the structural number has been optimised both for new road constructions 

and for existing pavements.  The calibration of pavement SN determination in the Czech Republic was carried out by 

means of the VYNAPA software which modelled pavement structures most frequently used in the territory.  
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1. INTRODUCTION 

 

Development of traffic infrastructure is an important precondition for the development of the Czech Republic’s 

economy.  From the perspective of costs, this is a highly demanding area with respect to ensuring operability alone, i.e. 

maintenance and common repair. Much higher still are the costs of reconstruction and modernisation work while new 

construction is naturally the most costly. With respect to the significance of traffic infrastructure for economic 

development, quick and good-quality accessibility of individual regions, improving quality of life but also with respect 

to the need for the Czech Republic’s involvement in trans-European transport networks there are strong pressures to 

provide adequate funds in both the short- and medium-term. 

The aforementioned need for road and highway network development results in a necessity to search for and use a 

model for efficient resource allocation in space and time while adhering to the principle of efficient use of funds. The 

issue of economic effectiveness assessment is paid due attention abroad; this is for instance one of the basic criteria 

used by the European Investment Bank to decide whether to provide a loan for a specific infrastructure program. The 

comparisons of the costs of road pavements during their lifecycles can use models.   

All those models usually work on a similar principle which is mutual comparison of the costs of purchase and future 

costs of maintenance and repair for a few structural options while taking into account various factors with an impact on 

the costs. The ideal is to design the optimal structural solution for a road to maximise the use of the structure both from 

the perspective of the investor and of the road users and population of the areas concerned. The investor’s main purpose 

is cost minimisation - investments, repair and maintenance costs and time demands of construction works. The priorities 

of road users are on the other side; these include primarily time and fuel savings, reduced vehicle wear and tear, lower 

accident numbers etc. The optimum is creating a methodology for comparing road options (from both the technical and 

economic perspectives) viable for a structural alternative selection not only by investors but also for the users 

themselves. 

One of such well known assessment tools is the Highway Development and Management (HDM) model. In the Czech 

Republic, the conditions for use of HDM-4 model are stipulated under the code CSHS (Czech Road Assessment 

System) which constitutes the workspace of HDM-4 program calibrated to the conditions and parameters of the Czech 

road infrastructure.   

HDM-4 is capable of monitoring the condition of the pavement in relation to multiple parameters and of proposing and 

implementing repair accordingly. This runs on the basis of the set up of pavement structure defect and deformation 

degradation curves.  These are strictly followed by the deployment of repair and maintenance work which, of course, 

brings along a need for funding. Unless the degrading curves are set correctly a need for pavement repair might arise 

regardless of whether the pavement actually is in a condition requiring such repair.  

One of the major factors affecting pavement degradation and, therefore, the calculation of the HDM-4 model is the so-

called Structural Number (SN). There are many methods to determine the SN depending on the quantity and quality of 

data available which might include: elastic modules of the materials, pavement structure layer thicknesses, output from 

the back calculation programs, output from the FWD device or design characteristics of the road (traffic load level). 

The calculation of SN for a new pavement design used most frequently is based on the AASHTO methodology and is as 

follows. 
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where: ai  structural layer coefficient characterizing its behaviour 

 hi thickness of i-th layer (mm) 

 n number of structural layers 

 

The methods used to determine the SN value of an existing pavement is also based on the relation to the pavement 

surface deflection under the FWD. Therefore, the structural number SN of a pavement characterises its structure. A 

better term for the parameter would be “load-bearing capacity number” since this parameter expresses the load-bearing 

capacity of the pavement, or its individual layers in a certain manner. 

Practice suggests a recognisable connection between SN and the final project assessment by HDM-4; therefore, an 

optimisation of the structural number expression has been undertaken for both new road construction and existing 

pavements. The determination of pavement SN in the Czech Republic was calibrated by means of the VYNAPA 

software which modelled pavement structures most frequently applied in the territory.   

All methodologies used world-wide to determine SN build their hypotheses on the basic relationship stipulated by the 

AASHTO methodology. The methodology prevails globally; however, as mentioned in the AASHTO Guide the 

determination of structural coefficients for materials in the pavement structure although the relations are unique for the 

materials used in the AASHO Road Test modelling which is used as the supporting data for the subsequently issued 

American design methodology. AASHTO Guide recommends that each design organisation using such relations adjust 

the interrelations to specify the local materials actually used in the location (state) in road pavement structures. 

Unfortunately, the AASHTO Guide’s list ends before the recommendation of a procedure suitable for use to determine 

structural coefficients in other locations. This results in constant issuance of new versions of structural coefficient 

determination and, analogously, structural numbers per se. 
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SN optimisation in the Czech Republic was carried out based on the known interconnections between the variables of 

new pavement SN (coefficients ai), existing pavement SN (deflections from FWD), output from back calculation 

programs and SNf (design structural number). The relations, determination methods, input parameters and factors 

affecting the values in question are depicted in fig. 1. 

 

Figure 1: Optimization of setting of the structural number 

To harmonise the structural number value, the Road Czech Technical University developed software VYNAPA 

(“VÝpočet NÁvrhových PArametrů” – Pavement Design Parameter Calculation). A spreadsheet editor simulated all 

available methods for structural number determination used world-wide for both new and existing pavements. When all 

dependencies had been compiled the software modelled the structures most frequently recommended (under Czech 

Pavement Design Manual TP 170) in the CZ for new pavement structures which eliminated methods with any extreme 

(unrealistic) result values (this eliminated the CSHS methodology). The resulting steps “left for” SN determination were 

sorted by comparing the structural number in a new pavement SN to the design structural number, SNf. This number 

takes into account the use of the planned road or, in other words, the classification of the traffic load on the road.  

 
2. METHODS OF DATA PROCESSING 

 

2.1 Optimization of structural number (SN) determination on newly designed pavements in CZ 

 

The determination of SN for new pavement structures is widely used within project assessment by means of HDM-4 

methodology. In the case of investment plans for road construction, economic effectiveness of the construction must be 

evidenced by output from HDM-4. Correct setting of the input parameters might have a considerable impact on project 

acceptance or rejection. In this stage of determination, the value of SN is based on the project pavement structures 

including material specification for individual layers and thicknesses thereof.  

The calculation of SN of a designed road pavement thus involves the thicknesses of individual pavement layers and the 

so-called structural coefficients ai specified for each pavement layer in the categories as given in table tab. 1. 

 

Table 1: Specification of structural coefficient according to applied layer 

Type of structural layer Structural coefficient 

Asphalt concrete wearing and binder course  a1 

Bitumen stabilized base layers 

a2 Cement stabilized base layers 

Non-stabilized base layers 

Non-stabilized sub-base layers a3 
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A correct determination of coefficients for the conditions in the Czech Republic forms an inseparable part of the 

solution; the values of the coefficients depend on the representative characteristics of quality of the materials used in the 

relevant layer (elastic modulus, compression strength, CBR). 

Optimisation of the determination of SN for new pavements in CZ was carried out using the VYNAPA software which 

modelled most frequently used pavement structures (using catalogue sheets TP 170). 

A specimen of partial calculations by VYNAPA is given below in fig. 2. 

 

 
Figure 2: Partial calculations in VYNAPA 

 

2.2 Optimization of structural number determination on existing pavement  

 

All dependencies available for the determination of the structural number of an existing pavement from the 

deflectometer data were compiled by means of the VYNAPA program. The data obtained were standardised to the 

temperature necessary for each specific methodology and contact pressure at 700 kPa. 

An example of the simulation of determination of individual relations within the framework of known methodologies 

was carried out e.g. using data from the diagnostics of motorway D5, section km 29,000 – 48,000 the partial calculation 

of which in VYNAPA are given in figs. 3 to 7. 

 

 
Figure 3: Assignment of input parameters (temperature during diagnostics assessment, deflections including 

their optimization) 
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Figure 4: SNC calculation by Ioannides methodology using modules of elasticity of odd layers by the program of 

back calculation  

 

 
Figure 5: SN and SNeff  calculation of a pavement together with CBR and Esg calculation of subgrade by 

methodology according to TU Birmingham and AASHTO model; application of knowledge of the total pavement 

thickness, loading under the plate and temperature during the measurement 

 

 
Figure 6: SN and CBR calculation of subsoil by Jameson, Roberts and Yonapave methodologies using the 

knowledge of deflections resulting from FWD (hereafter loading under the plate at temperature during the 

measurement)  
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Figure 7: SNP calculation by HDM-4 methodology using only deflection data received by the central transducer 

at 30°C (identical with deflections received by the Benkelman Beam test equipment) 

 

As can be seen in the tables above, different methodologies result in different SN final values. All of the methodologies 

researches, authors recommend applying their methodologies for local purposes in particular with respect to the 

materials used at the area of experiments and testing to determine the suitable SN calculation. This suggested the 

question: What methodology for determining the SN of existing pavements in the Czech Republic should be used? The 

effort towards answering the question results in a need to develop a new methodology to respect the materials used in 

pavement structures in the roads in the Czech Republic. 

Nine basic expected regression models to be used as input for the subsequent statistical analysis have been compiled for 

this purpose. The recommended analysis should result in finding the statistical model with the highest 

correlation/probability value R
2 

which would prove the best fit for the conditions of the Czech Republic. 

 
3. RESULTS 

 

3.1 Optimization of the structural number SN on Ely designed pavements in CZ 

 

3.1.1 Final determination of structural coefficient a1 for wearing and binder pavement courses 

The process of determining a1 for a new pavement structure involves, as main criteria, the elastic modulus according to 

the asphalt layer used; therefore, attention must be paid to realistic quantification of values of this parameter. With 

respect to the fact that the structural coefficient a1 is determined for the entire pavement surfacing (the wearing as well 

as binder course) a conversion is recommended from a two-layer system to a single-layer system according to the 

simplified procedure using the weighted average with a view of individual elastic modules and thicknesses of both 

pavement cover layers.  
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where:  EK optimized modulus of elasticity of wearing and binder course at 20°C [MPa] 

 EO modulus of elasticity of pavement wearing course at 20°C [MPa] 

 EL modulus of elasticity of pavement binder course at 20°C [MPa] 

 hK thickness of wearing and binder course [mm] 

 hO thickness of wearing course [mm] 

 hL thickness of binder course [mm] 

 

This method yields the input elastic modulus EK (MPa) for the cover layers of thickness hK (mm) for the determination 

of the structural coefficient a1. 

The VYNAPA software proved (when SN of various structures with SNf as above have been compared) that the 

AASHTO methodology is the most relevant for the determination of a1 (i.e. it reflects the elastic modulus value), 

although the upper limit of the modulus values used must be extended. For the purposes of making the coefficient 

realistic, the recommended upper limit 0.45 was shifted according to the regression equation (see figure 8): 

  8595.0ln1605.01  KEa  

where:  a1 structural coefficient of asphalt wearing and binder courses 

 EK modules if elasticity at 20°C [MPa] 

 

This measure, i.e. extending the limit value of 0.45 as determined by the American methodology, are more and more 

often used by authors of other contemporary methodologies based on AASHTO with respect to the past development in 

the quality improvement of materials applied nowadays.  Another positive of using the methodology is the input value 

of the elastic modulus under 20°C which is a better reflection of the real conditions in the Czech Republic than the 30°C 

currently entered according to CSHS.  
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Figure 8: Correlation between the coefficient a1 and modulus of elasticity of selected layer 

 

3.1.2 Final determination of the structural coefficient a2 for base layers  

Again, bitumen-stabilised base layers used most frequently in the Czech Republic (including high stiffness modulus 

asphalt mixes) seem more suitable for the methodology according to AASHTO, with respect to significantly unrealistic 

simplification of HDM-4 or CSHS in the form of selecting just one value of the coefficient, 0.32, this time for all elastic 

modulus values. This method is detrimental to materials with more load-bearing capacity because their quality is not 

reflected in the value of a2 and, analogously, the use of a base with less load-bearing capacity will have no effect on the 

resulting SN value. Again, the dependence of the a2 coefficient on the elastic modulus was examined; with respect to the 

absence of a prescribed dependence equation according to the AASHTO methodology, a regress analysis was 

performed for the values from the nomogram and the basic logarithmic formula with a high reliability value was 

determined (see figure 9) as follows: 

  7992.0ln1410.02  HPEa  

where:  a2 structural coefficient of bitumen stabilized base pavement layer 

             EHP modules of elasticity of base layer at 20°C [MPa] 
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Figure 9: Correlation between the coefficient a2 and modulus of elasticity of selected layer 

 

Another group of materials used in those pavement layers are materials hydraulically bonded materials. The AASHTO 

methodology based on the materials’ compression strength can be recommended for such layers. The compression 

strength of cement-bonded materials is tested according to AASHTO after 7 days’ curing while according to the ČSN 

EN, the strength is tested on specimens after 28 days’ humidity exposure in the Czech Republic. Therefore, a 

conversion of strengths had to be made for 7 days from the 28 days.    

After optimising the compression strength, the mutual dependence of two values (ai and P) was determined by means of 

the AASHTO nomogram as depicted in the following figure 10. The resulting equation for the determination of the 

structural coefficient thus has the following form according to the linear trend curve formula.  
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0922.00229.0 72  daysPa  

where:  a2 structural coefficient for hydraulically bonded base course  

             P7days compression strength after 7 days curing [MPa] 

 

Compression strength after 7 days curing [MPa]
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Figure 10: Correlation between the coefficient a2 and compression strength 

 

The case of non-stabilised material can be named as materials least used in the base layers. Such technologies are used 

primarily in pavement structures with low traffic load which, due to their character and utilisation, will not be entered in 

the HDM-4 assessment; however, the AASHTO methodology has proven the best option again as it allows determining 

the coefficient based on the materials’ elastic modulus in contrast to the relation to CBR value that is the only one given 

in HDM-4. With respect to the character of the non-stabilized materials in such layers, it is more realistic in our 

conditions to start with the elastic modulus values which are also given in the Czech Republic’s design methodology 

while the CBR value of such materials is not usually determined.  

The resulting recommended equation for the calculation of the a2 parameter for non-stabilised layers is as follows, with 

the additional commend that the absolute correctness thereof must be verified by further research which was not 

conducted with respect to the low level of use in our conditions.  

  977.0log249.0 102  triaxEa  

where:  Etriax modulus of elasticity of non-stabilized materials  received by the triaxial test [MPa] 

 

3.1.3 Final determination of structural coefficient a3 for sub-base pavement layer 

In contrast to the above, non-stabilised materials find most use in sub-base pavement layers. The methodologies 

available determine the structural coefficients for sub-base pavement layers based on their dependence on the CBR 

value of the non-stabilised material. This is the only structural coefficient to indicate the same value using both major 

methodologies (HDM-4 and AASHTO); therefore, even for the Czech Republic, the a3 coefficient is recommended to 

obtain from the relation to CBR although the values of modules for the layers would be realistically more accessible. To 

determine the representative CBR values of materials used for the sub-base pavement layers in the Czech Republic, 

more experiments on various material types would be necessary; due to considerable demands this was not undertaken 

within the framework of the study. In the practice, CBR of the materials is not determined too often; therefore, research 

focusing solely on clarifying this issue would be most appropriate.    

With respect to the fact that there are multiple sub-base layers (most frequently two), in order to determine the final 

CBR value from which the a3 coefficient can subsequently be taken the multi-layer system must be converted to a 

single-layer system using the weighted average.  
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where:  CBRSP optimized CBR value of sub-base pavement layers [%] 

  CBRi CBR value of i-th sub-base pavement layer [%] 

 hSP total thickness of all sub-base layers [mm] 

 hi thickness of i-th sub-base layer [mm] 
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Again, the dependence of the coefficient on the CBR value was modelled according to the AASHTO nomogram 

available, and adjusted to our conditions. The resulting equation follows the trend curve given in the chart. 

 

S
tr

u
c
tu

ra
l 

c
o

e
ff

ic
ie

n
t 

a
3

S
tr

u
c
tu

ra
l 

c
o

e
ff

ic
ie

n
t 

a
3

 
Figure 11: Correlation between the coefficient a3 and the CBR value 

 

According to the following equation, the value of the structural coefficient a3 can be calculated with the CBRSP value 

and the correlation diagram. 

  0077.0ln0295.03  SPCBRa  

When the three basic structural coefficients have been determined the structural number SN, i.e. the impact of the cover 

and base layers can be calculated according to the formula the fundamentals of which are common to all methodologies 

(AASHTO, CSHS, HDM-4), that is, according to the basic SN equation.   

 

3.1.4 Final determination of subgrade influence 

In the sense of the original AASHTO methodology, the calculation of the structural number does not include the impact 

of the pavement subgrade, therefore, as has been said above, the determination of this level of the structural number 

only represents the effect of the pavement structure (surfacing and base layers). However, the condition of the subgrade 

has a considerable impact on the load-bearing capacity of the pavement and, therefore, a formula to express the 

influence of the subgrade on the SN value was searched for.  To introduce the effect of the subgrade in our conditions, 

the 1997 methodology (Parkman and Rolt) marked as SNSUBG can be adopted. 

          43.1log85.0log51.3expexp
2

10103210  CBRCBRzbzbbbSN mmSUBG  

where: SNSUBG  subgrade quotient 

 CBR  CBR value of the subgrade [%] 

 bo, b1, b2, b3 model coefficients  

 m  number of sub-base pavement layers 

 z   assessed depth from the surface of the sub-base layer  [mm] 

 

The calculation using the HDM-4 methodology and manual entry of the structural number value includes the original 

structural number according to the AASHTO methodology as the main parameter. It is also necessary to specify the 

CBR of the subgrade and the resulting SNP, a sort of adjusted structural number which takes into consideration the 

effect of the subgrade is calculated automatically by the program.  SNP is thus an adjusted original structural number, 

SN, and can be expressed as follows. 

SUBRSNSNSNP   

where: SNSUBG  subgrade quotient  

 SN  ”original” structural number  

A flow diagram has been compiled for a better illustration of the issue (see figure 12) with the logical relations between 

individual layers and materials.  
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Figure 12: Flow-process diagram for structural number determination 

 

 

3.2 Optimization of structural number determination on existing pavement 

 

It can be noted that the determination of SN for an existing road according to the description in the HDM-4 

methodology is insufficient. The main idea is based solely on the use of the central deflection under FWD which 

characterises the structure as a whole; however, it does not allow for determining the contributions of individual layers 

to the load-bearing capacity achieved. It is certainly appropriate to choose a methodology which will also respect the 

layer system of the pavement, that is, the calculation will also include other probes within the deflection curve which 

provide more information on the condition of the pavement in the equivalent depth equal to the distance from the centre 
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of loading (using the relevant ordinate of deflection line). Due to that, nine different regression models were compiled 

for statistical analysis.  

Having studied the principles already at work, it may be recommended to divide the pavement structures to two basic 

groups for regress analysis, namely those: 

 with bitumen-stabilised sub-base layer 

 with hydraulically-bonded sub-base layer   

 

The recommendation is determining a separate regression model for each group due to non-homogeneous behaviour of 

the pavements with different sub-base layer types. Of course, the effect of temperature which is only reflected in 

bitumen-stabilised layers while the hydraulic binders are not significantly affected thereby must have a great impact on 

the different behaviours.   

The analysis will be carried out on the prescribed nine regression models for the calculation of SN from the output from 

the deflectometer the results of which will be compared to the SN determined based on the modulus of elasticity of 

actual materials in the same pavement (at the same locations where the FWD diagnostics was performed). This would 

exclude the simplified consideration of SN correlation with the central deflection only (i.e. HDM-4). The SN determined 

on the materials will follow the methodology for structural coefficients ai. Structural coefficients for individual layers 

will be attributed according to the actual elastic modules measured in the laboratory for the material samples taken and 

the structural number SN will subsequently be calculated with respect to the thicknesses of individual pavement layers.   

The essence of the analysis can be generalised in the form of the following formula: 

   xI DfEf SNSN   

where:  SNf(Ei) structural number  SN specified as function related to material modulus of elasticity Ei 

   SNf(Dx) structural number SN specified as function of selected deflections DX  measured by FWD apparatus 

 

The regression models for the determination of the SN of existing pavements have been found based on a literature 

search of the methodologies applied world-wide and on the assumption of ruling out the dependence on the thicknesses 

of individual pavement layers and other partial “side calculations” in the form of programs for back calculation of 

pavement parameters. 

The prescribed regress models are mentioned in table 2 and include the dependence of the structural number on the 

deflections under FWD with probes in the distance of 500; 900; 1,200 and 1,500 mm from the centre of load which 

were found to have the best information value in relation to the condition of individual pavement structure layers 

(models 1 – 7 ) as well as the dependence on the  AREA parameter, deflection under the sensor located 1,200 mm from 

the load centre and the distance of the fourth deflection sensor (model 8 - 9).  

The remaining deflections, primarily the border deflections at distances exceeding 1,500 mm depend solely on the 

stiffness of the subgrade and, therefore, have not been taken into account in the analysis.  The subgrade is sufficiently 

described by the sensors included in the analysis and the relation thereof to the central sensor follows the principle that 

small deflections at the border sensors are measured in a situation where the soil in the subgrade reaches high stiffness 

modules and, therefore, the SN determined in the models proposed for equal value of the deflection under the central 

sensor must be increased in cases where the deflection under the border sensor is reduced (the SN calculation responds 

to a “stiff” subgrade). In contrast to that, for the same deflection under the border sensor the SN must increase when the 

value of the deflection under the central sensor decreases (the SN calculation responds to the quality of the pavement 

structure). 

 

Table 2: Regression models recommended for the analysis 

Number of 

model 
Equation for regression analysis 

1 
9000 D

C

D

B
ASN   

2 SN = A + Blog(D0) + Clog(D900) 

3 



SN  A 
B

D0 D1500

C

D900

 

4 



SN  A 
B

D0 D1200

C

D900

 

5 SN = A + Blog(D0) + Clog(D1500) 

6 SN = A + B[log(D0)]
2
 + C[log(D1500)]

2 

7 



SN  A 
B

D0

C

D1500

 

8 SN = A + B[AREA]
0,5

 + CD1200
 

9 SN = A + B[(AREA) - MD1200]
0,5 
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where: D0 pavement surfacing deflection measured by a transducer placed in the middle of the plate at contact 

pressure of 700 kPa and temperature of 20°C [mm] 

 DX pavement surfacing deflection measured by a transducer placed in the distance X from the centre of 

loading at contact pressure of 700 kPa and temperature of 20°C [mm] 

 X distance of the deflection transducer from the centre of the equipment [mm]; X = 900 mm, 1200 mm, 

1500 mm   

 M distance of the fourth deflection transducer from the centre of the equipment [mm] 

AREA parameter in [mm] calculated form following equation: 

 A, B, C coefficients implicated from regression analysis 

NOTE: Determination of the coefficients has to reflect the impact of subgrade and stiffness of pavement structural 

layers on SN and deflections in the pavement surface 

 

The model must involve deflections from undamaged pavements (ideally just built ones) to prevent any possible defects 

(cracks, potholes, structural defects, etc.) from influencing the diagnostics by the FWD, i.e. the deflections measured, 

and from distorting the analysis results.  

For the analysis to retain sufficient relevance, the equations must be derived from a sufficiently large data sample with a 

reasonable range of SN and subgrade stiffness values.  

 
4. SUMMARY 

 

The SN value is an important material characteristic respected in all advanced countries of the world; the correct 

calibration of the parameter could help the Czech Republic to find its place within these countries and to gain better 

advantage from program modelling by HDM-4 system in the sense that the outputs will reflect reality to a better degree 

and financial resources will be allocated to road construction in a more purposeful way. A correct determination of the 

SN value and, thereby, adequate setting of the entire HDM-4 system should result in an efficient, economical and 

purposeful use of funds for road preparation and construction.  

The VYNAPA software is a helpful advanced tool for the determination of the optimal structural number value. In 

various modifications, it could be used for conditions other than in the Czech Republic as well.  
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