15 AAPA
INTERNATIONAL

FLEXIBLE PAVEMENTS

CONFERENCE

Evaluation of Dynamic Modulus Predictive Models for Typical Australian Asphalt Mixes

Saeed Yousefdoostl, Binh Vuongz, lan Rickardsa, Peter Armstrong4, Bevan Sullivan®
1: PhD Candidate, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology,
Australia, saeed.yousefdoost@yahoo.com
2: Associate Professor, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology,
Australia, binhvuong.services@gmail.com
3: Technical Consultant, Australian Asphalt Pavement Association (AAPA), Australia,
ian_rickards@bigpond.com
4: National Technical Manager, Fulton Hogan Pty Ltd, Australia, Peter.Armstrong@fultonhogan.com.au
5: National Technical Manager, Fulton Hogan Pty Ltd, Australia, Bevan.Sullivan@fultonhogan.com.au

Keywords: Hot Mix Asphalt, Dynamic Modulus, Predictive Models, Hirsch, Alkhateeb, Witczak, Goodness-of-Fit
Statistics, Sensitivity Analysis, Tornado Plot, Extreme Tail

1. Abstract

Dynamic modulus is a fundamental property of asphalt mixes, which is required as material input in
most mechanistic-empirical pavement design systems. In the US, various database of dynamic
modulus for asphalt mixes have been established and a number of models (Witczak 1-37A, Witczak
1-40D, Hirsch and Alkhateeb) have been developed to predict dynamic modulus of asphalt materials
from various intrinsic characteristics of the mix. However, there is concern about whether these
models are appropriate for Australian asphalt mixes. In this study, dynamic moduli of 28 different
Australian asphalt mixes were tested over a spectrum of temperatures and loading frequencies, and
intrinsic characteristics of the mixes were also determined to establish an Australian database that
allows comparison with the US databases and validation of the nominated US models. Results in this
study showed that Witczak 1-37A, Hirsch and Alkhateeb models generally under predicted dynamic
moduli of the mixes while Witczak 1-40D over predicted the values. The level of bias and error
observed in Hirsch, Alkhateeb and Witczak 1-40 was found to be high. The performance of all the
models was also found to be inconsistent across different temperatures. Sensitivity analyses of the
correlations between dynamic modulus and intrinsic characteristics used in the studied models
showed that intrinsic characteristics related to binder properties have the most significant effect on
the predicted dynamic modulus. The overall performance of the studied models suggested that they
are not robust enough for Australian asphalt mixes.

2. Introduction

Dynamic modulus (|E*|) is a fundamental property of asphalt mixes, which is required as a material
input in most mechanistic-empirical pavement design systems, typically the Mechanistic Empirical
Pavement Design Guide (MEPDG) in the US. As a result of the National Cooperative Highway
Research Program (NCHRP) project 9-19 (Superpave Support and Performance Models
Management) and project 9-29 (Simple Performance Tester for Superpave Mix Design), the Asphalt
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Materials Performance Tester (AMPT), formerly known as the Simple Performance Tester (SPT), was
developed to measure dynamic modulus and evaluate the performance of Superpave HMA mixes
[1]. By implementing the time-temperature superposition principle, dynamic modulus master curves
can be developed to account for the effects of temperature and loading frequency from which
dynamic modulus can be determined across any desired temperature and loading rate [2]. However,
dynamic modulus testing and construction of the master curves can be time consuming and costly
and it requires trained staff [3-6]. Consequently, a number of databases of dynamic modulus for US
asphalt mixes have been established and several models (Witczak 1-37A, Witczak 1-40D, Hirsch and
Alkhateeb) have been developed to predict dynamic modulus of asphalt materials from various
intrinsic characteristics of the mix such as volumetric properties, aggregate gradation and binder
properties, for pavement design purposes.

Currently, the US pavement design MEPDG uses measured dynamic modulus values (determined
from laboratory testing) for level one design scheme in the hierarchical design approach and allows
estimated dynamic modulus values, which are predicted using one of the approved predictive
models, for levels two and three of the design. There has been growing interest amongst road
authorities in Australia in adopting dynamic modulus as a more rational and realistic representative
of materials properties than currently used resilient modulus in the pavement design procedure [7].
However, there is concern about whether the US dynamic modulus predictive models are
appropriate for Australian asphalt mixes.

As part of a comprehensive research program to improve the effective deployment of Long Life
Asphalt Pavement (LLAP) structures within Australian highway construction practice [1], a database
of dynamic moduli of Australian asphalt mixes suitable for LLAP has been established by the
Australian Asphalt Pavement Association (AAPA). A PhD research project titled “Perpetual Pavement
— Design Enhancement” at Swinburne University of Technology has also investigated the
performance of four common dynamic modulus predictive models (Witczak 1-37A, Hirsch, Witczak
1-40D and Alkhateeb) using the developed Australian database.

This paper provides brief descriptions of the Australian dynamic modulus database and evaluations
of the accuracy of four dynamic modulus predictive models (Witczak 1-37A, Witczak 1-40D, Hirsch
and Alkhateeb) in estimating the dynamic modulus for typical asphalt mixes in Australia. The
sensitivity of the nominated models to their input parameters (mix and binder properties) is also
discussed.

3. Dynamic Modulus Database of Australian Asphalt Mixes

The database includes a total number of 1344 data points of dynamic modulus, which is suitable for
assessing the performance of the nominated predictive models. Brief descriptions of the mix and
binder properties and test methods used to determine the dynamic modulus are given below.

3.1. Description of Materials

This study focused on 28 standard dense graded asphalt materials produced by Australia’s major
asphalt producers. The asphalt samples consisted of 15 mixes with nominal maximum aggregate size
(NMAS) of 14mm and 13 mixes with NMAS of 20mm. The asphalt samples were carefully selected
and nominated to make sure that the spectrum of Australia’s generally used aggregates and binders



in major projects was covered. Studied mixes contained nine types of aggregates (Honfels, Granite,
Greywacke, Limestone, Dolomite, Dolomatic Siltstone, Basalt, Latite and Dacite) and five types of
binders (C320, C600, AR450, Multigrade and A15E PMB). The Rap content of the mixes varied from
nil up to 30 percent.

3.2. Sample Preparation

Asphalt samples were taken in loose form from plant production and were then cooled and
delivered to the laboratory. The mix design of the studied asphalt samples was based on two
common methods currently being used in Australia: a) Marshall mix design method (Marshall
compaction) and the Austroads mix design method (Gyropac compaction). After reheating, samples
were compacted into 450mm x 150mm x 180mm blocks using PReSBOX compactor. PReSBOX
compactor applies a constant vertical axial load and a cyclic horizontal shear force with a constant
maximum shear angle to compact asphalt blocks. It is believed that the shearing action of the
PReSBOX compactor closely replicates the conditions under which asphalt is placed in the field,
producing blocks with uniform air void distribution, particle orientation and density [8, 9].
Compacted blocks were then cored and trimmed to obtain three cylindrical specimens 102mm in
diameter and 150mm in height. Specimens were compacted at 4+0.5% target air voids. A total
number of 28 blocks were compacted from which 56 cores (two replicates per mix) were prepared
for dynamic modulus testing.

3.3. Test Methods

To meet the objectives of this study, dynamic modulus laboratory testing was conducted on plant
produced laboratory compacted asphalt mixes. Dynamic Shear Rheometer (DSR) testing was also
conducted on the corresponding binders. The Asphalt Mixture Performance Tester (AMPT) at Fulton
Hogan R&D asphalt laboratory was used to perform dynamic modulus tests in accordance with
AASHTO TP 79-11 (Determining the dynamic modulus and flow number for hot mix asphalt using the
asphalt mixture performance tester). In the dynamic modulus test, an asphalt specimen is subjected
to a controlled sinusoidal compressive stress at various temperatures, frequencies and confinement
pressures. The dynamic modulus and the phase angle of the specimen are then calculated based on
the applied stresses and the axial response strains with respect to time. Testing was carried out at
four temperatures (5, 20, 35 and 50°C), six loading frequencies (0.1, 0.5, 1, 5, 10 and 25 Hz) and four
levels of confinement pressures (Nil, 50, 100 and 200 KPa). Only results from unconfined testing
condition are reported in this study. Results of the dynamic modulus tests were then compared with
the values predicted by the four nominated predictive models (Witczak 1-37A, Witczak 1-40D, Hirsch
and Alkhateeb) and the accuracy of the models was evaluated.

DSR test equipment at Fulton Hogan binder laboratory was used to test the rheological properties of
RTFO aged binders (Complex shear modulus and Phase Angle) in accordance with Fulton Hogan’s
DSR test procedure 121110 (equivalent to AASHTO T 315-12). The dynamic shear rheometer applies
sinusoidal waveform oscillatory shear force to a binder sample formed between two parallel plates
at preselected frequencies and temperatures to calculate complex shear modulus (G") and the phase
angle (8) of the binder. Testing was carried out at temperatures from 20 to 60°C with increments of
five degrees and 11 frequencies ranging from 0.1 to 10 Hz.



3.4. Development of Master Curves

Since the test temperature and loading frequency used for dynamic modulus and DSR tests were
different, master curves were developed for the DSR test results (complex shear modulus and phase
angle) for all the binder samples so that shear moduli and phase angles could be obtained from
developed master curves for any desired temperature and loading frequency.

Master curves are constructed based on the time-temperature superposition principle. The binders’
complex shear modulus and phase angle data at various temperatures were shifted in line with
respect to the loading frequency until the curves merged into a single smooth function. Master
curves describe the time dependency of materials. The temperature dependency of materials is
defined by the amount of shifting required at each temperature to form the master curve [2].

Christensen-Anderson, Christensen-Anderson-Marasteanu, Algadi-Elseifi and a sigmoidal function
models were nominated to construct the G* and 6 master curves [10-12]. The sigmoidal function
and a second order polynomial shift factor provided the best fit with minimum errors and therefore
were selected to be used for developing the master curves. The general forms of the utilized master
curve and the shift factor functions are given in equations 1 and 2 respectively.
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1+eB+vlogfr
log f; =logf +a,(Tg = T) + a,(Tg — T)* (2)

P: The calculated Parameter (complex shear modulus in Pa or phase angle in degrees)
a, B, 6, Y, a; and a,: Fitting parameters

f.: Reduced frequency at the reference temperature, Hz

f: Loading frequency at the test temperature, Hz

Tr: Reference temperature, °C (20°C in this study)

T: Test temperature, °C

Complex Shear Modulus Master Curves - Post RTFO Binder Phase Angle Master Curves - Post RTFO Binder

1.E+08 100
1.E+07
1.E+06 10
1.E+05

1.E+04

1.E+03

0.1

Phase Angle (Degrees) - Log scale
=

1.E+02 AR450 (14-12) AR450 (14-12)
Multigrade (14-13) Multigrade (14-13)
1E+01 AISE (14-15A) A1SE (14-15A)
€320 (14-01) €320 (14-01)

€600 (20-05) €600 (20-05)
LE+00 0.01

1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E-09 1.E-07 1.E-05 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05

Complex Shear Modulus (Pa) - Log scale

Reduced Frequency (Hz) - Log scale Reduced Frequency (Hz) - Log scale

(a) (b)

Figurel. Examples of master curves developed for C320, C600, AR450, Multigrade and A15E binders (a)
complex shear modulus (b) phase angle

Microsoft Excel Solver was then used to find the fitting parameters by minimizing the sum of
squared errors between the measured complex shear modulus and phase angle at each
temperature/frequency combination and the calculated values by equation 1. Figure 1 shows
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examples of developed master curves for the complex shear modulus and the phase angle of C320,
C600, AR450, Multigrade and A15E RTFO aged binders.

4. Review of the US Dynamic Modulus Database and Predictive Models
4.1. Witczak 1-37A Model

Andrei Witczak et al. developed this model based on a database of 2750 data points representing
dynamic modulus test results for 205 asphalt mixes tested over 30 years in the laboratories of the
Asphalt Institute, the University of Maryland, and the Federal Highway Administration [2]. The
original version of the model was developed by Shook and Kalas in 1969 and was further modified
and refined by Fonseca and Witczak in 1996 [13]. Witczak 1-37A was developed based on a
combined database of the original Fonseca and Witczak model (1430 data points, 149 conventional
asphalt mixes) and an additional 1320 data points of 56 new mixes including 34 mixes with modified
binders [14]. This model (given in equation 3) is based on nonlinear regression analysis and is
currently being utilized to predict dynamic modulus of the asphalt mixes in level 2 and 3 designs of
the MEPDG in the US [2]. It incorporates basic volumetric properties and grading of the asphalt mix,
binder viscosity and loading frequency into a sigmoidal function to predict the dynamic modulus
over a spectrum of temperature and frequency. Summary details of the Witczak 1-37A database are
presented in table 1[15].

log E = —1.249937 + 0.029232.p500 — 0.001767. (p200)? — 0.002841.p, — 0.058097.V,

v
—0.802208, — 2T

(Vberr + Va)
, 3871977 — 0.0021.p, + 0.003958. pg — 0.000017. (psg)? + 0.005470. s,

1+ e(—0.603313—0.313551.log(f)—0.393532.log(n))

(3)

Where:

E: Asphalt mix dynamic modulus, in 10° psi

N: Bitumen viscosity, in 10° poise (at any temperature, degree of aging)

f: Load frequency in Hz

Va: % Air voids in the mix, by volume

Vieri: % Effective bitumen content, by volume

paa: % Retained on the 3/4 inch sieve, by total aggregate weight (cumulative)
p3g: % Retained on the 3/8 inch sieve, by total aggregate weight (cumulative)
p4: % Retained on the No. 4 sieve, by total aggregate weight (cumulative)
P2oo: % Passing the No.200 sieve, by total aggregate weight

Witczak 1-37A requires an established linear viscosity—temperature relationship to calculate the
viscosity of the binder at a desired temperature using equation 4, in which n is the viscosity of binder
(centipoise), Tg is temperature (Rankine) and A and VTS are regression constants.

loglogn = A+ VTSlogTg (4)

Depending on the availability of the data and the required level of accuracy, the binder viscosity can
be obtained directly from laboratory measurements or can be estimated using empirical
relationships with a series of conventional binder tests such as ring and ball, penetration and
kinematic viscosity; typical values for A and VTS are also provided in the MEPGDG based on



performance grade, viscosity grade and penetration grade of the binder [2, 16]. In this study, A and
VTS were calculated by establishing a linear regression for laboratory measured viscosities of the
binders at 5, 20, 35 and 50°C to comply with the planned dynamic modulus testing temperature
regime.

Tablel. Summary of Witczak 1-37A Dataset

Temperature Range  0to 130°F (-17.7 to 54.4°C)
Loading Frequency 0.1to 25 Hz

9 unmodified

Binder 14 Modified
Aggregate 39 types

. 171 with unmodified binder
Asphalt Mix 34 with modified binder
Compaction Kneading and Gyratory

Cylindrical 4 x 8 in (10 .2 x 20.3 cm): Kneading Compaction

Speci Si S . .
pecimen >ize Cylindrical 2.75 x 5.5 in(7 x 14 cm): Gyratory Compaction

Specimen Aging Un-aged
Total Data Points 2750

4.2. Witczak 1-40D Model

Bari and Witczak conducted further dynamic modulus testing on asphalt mixes which resulted in a
revised version of Witczak’s former model based on 7400 data points acquired from 346 different
HMA mixes. Their expanded database consisted of HMA mixes with different aggregate gradations,
binder types (conventional, polymer modified and rubber modified), mix types (conventional un-
modified and lime or rubber modified) and aging conditions (no aging, short-term oven aging, plant
aging and field aging) [14]. The test specimens in their new database had a cylindrical size of 2.75 x
5.5 in (7 x 14 cm) and were compacted by gyratory compaction. Dynamic modulus tests were
conducted from 0 to 130°F (-17.7 to 54.4°C) temperatures and 0.1 to 25 Hz loading frequencies [17].

In their new model, the sigmoidal structural form of the original model was maintained and the
same inputs of volumetric and gradation properties of the mix were used. However, DSR test results
were incorporated instead of viscosity and frequency to reflect the rheology of the binder with
changing temperature and load rate [16, 17]. The revised model is expressed as equation 5.

log E = —0.349 + 0.754(]G, | ~00052)

X (6.65 — 0.032p,00 + 0.0027p,0% + 0.011p, — 0.0001p,2 + 0.006p,4

v,
—0.00014p542 — 0.08V, — 1.06 (H”;‘;"»
a beff

Vberr 2
2.56 + 0.03V, + 0.71 (—22L—) + 0.012ps5 — 0.0001ps52 — 0.01ps,
Vo + Viery

+ T
1 4 e(-0.7814-0.578585l0g|Gp"|+0.8834l0g 5) (5)

Where |Gp*| is the dynamic shear modulus of the binder (in psi) and &, is the phase angle of the

binder associated with |Gp*| (in degrees) [17].



As part of the model development, Bari and Witczak assumed that the angular loading frequency in
dynamic compression mode (f. in Hz) as used in the dynamic modulus test and the loading frequency
in dynamic shear mode (f; in Hz) as used in the DSR test, are not equal but related as f.=2nf, [17].
Therefore, in this study loading frequencies of 3.979, 1.592, 0.796, 0.159, 0.080 and 0.016 Hz
(equivalent to 25, 10, 5, 1, 0.5 and 0.1 Hz in compression mode) were used in the DSR test to
estimate shear modulus (|Gy*|) and phase angle (6) as the inputs into the dynamic modulus
predictive model.

4.3. Hirsch Model

Christensen et al. applied the Hirsch model, an existing law of mixtures which combines series and
parallel elements of phases, to asphalt mixes and developed this model based on a database that
includes results from testing on 18 asphalt mixes using eight different binders and five different
aggregate sizes and gradations (Table 2). A total of 206 observations were included in the dataset for
each shear and compression test. The Hirsch model incorporates volumetric properties of the mix
(VMA and VFB) and dynamic shear modulus of the binder (Gy*). The binder shear moduli of the
Hirsch database were measured using the Superpave Shear Tester (SST) frequency sweep procedure
on asphalt specimens. The model is given in equations 6 and 7 [18].

el = pole200000 (1 - YMAY | a6 VFBXVMA (1-PF) (6)
| |mix = P. X [ , ) ( . _100) + | |binder( 10,000 )] 1— VMA
T00 VMA
4,200,000 ° 3VFA|G*|pinder
(20 + VFBX3|G*|binder)0I58 (7)
_ VMA
PC B 650 + (VFBX3|G*|binder)0I58
VMA
Where:

| Gb*|: Absolute Value of the binder complex shear modulus (psi)
|E*|: Absolute value of asphalt mix dynamic modulus (psi)

VMA: Voids in mineral aggregates in compacted mix (%)

VFB: Voids filled with binder in compacted mix (%)

Table2. Summary of Hirsch Dataset
1

Factor ALF MN/Road West Track Total
Design Method Marshall Marshall Superpave 2

AC-5, 10, 20 AC-20
Binders SBS Modified 120/150-Pen PG 64-22 8

PE-Modified
Aggregate Size 19mm Dense . 19mm Fine
afi Gfadation 37.5mm Fine 9-5mm Fine 19mm Coarse >
Asphalt Mix 7 5 6 18
Total Data Point 78 59 69 206

For Complete Database

Air Voids (%) 5.6t011.2 Complex Shear Modulus (MPa) 20 to 3,880
VMA (%) 13.7t0 21.6 Phase Angle (degrees) 8tob6l
VFB (%) 38.7to 68 Temperature (°C) 4,21 and 38
Dynamic Modulus (MPa) 183 to 20900 Loading Frequency 0.1and5

1: FHWA Accelerated Loading Facility



4.4, Alkhateeb Model

Alkhateeb et al. used law of mixtures and combined behavior of a three-phase system of aggregate,
binder and air voids in parallel arrangement with each other to formulate their predictive model as
described in equation 8. Alkhateeb et al. tested the dynamic modulus of plant-produced lab-
compacted (PPLC), lab-produced lab-compacted (LPLC) and field cored specimens for their study.
The LPLC specimens were fabricated with 6 binders: unmodified PG-70-22, PG 70-28 air blown, PG
70-28 Styrene-Butadiene-Styrene Linear-Grafted (SBS LG), PG 76-28 crumb rubber blended at the
terminal (CR-TB), PG 70-28 Ethylene Terpolymer, and PG 70-34 binder containing a blend of SB and
SBS. The aggregates used to prepare the specimens were crushed Diabase stone with NMAS of
12.5mm. Details of the aggregate specifications are presented in table 3.

Table3. Summary of Alkhateeb Dataset

Aggregate and Mix Properties Aggregate Grading

Bulk Dry Specific Gravity (t/m”’) 2.947 Sieve size (mm)  %Passing
Bulk Saturated Surface Dry Gravity (t/m’) 2.965 37.5 100
Apparent Specific Gravity (t/m°) 3.001 12.5 93.6
Absorption (%) 0.6 9.5 84.6
Los Angeles Abrasion (%) 19 4.75 56.7
Sand Equivalent (%) 75 2.36 34.9
NMAS (mm) 12.5 1.18 24.8
LPLC Binder Content (%) 5.3 0.6 18.2
LPLC and PPLC Compaction Gyratory 0.3 13.1
Targeted Air Voids (%) 7+0.5 0.15 9.3
Specimen Cylinder Size(mm) 100 x 150 0.075 6.7
Dynamic Modulus Test Temperature (°C) 4,9, 31, 46,58

Dynamic Modulus Test Frequency (Hz) 0.1,0.5,1,5,10

The LPLC specimens were short-term oven aged (4 hours at 135°C) with a binder content of 5.3%
and targeted air voids of 7+0.5 percent. Gyratory compaction was used to compact the LPLC and
PPLC specimens (100 x 150mm). The dynamic modulus test was performed on the specimens at 4, 9,
31, 46 and 58°C and 0.1, 0.5, 1, 5, 10 Hz loading frequencies. Alkhateeb’s model was calibrated with
four polymer modified asphalts and one plant produced neat asphalt. The calibrated model was then
validated against the other mixes of the dataset [19].

|G*|b 0.66
100 — VMA (90 + 145 VMA) .
100 |G*|b>0'66 16l (8)
VMA

B =3

1100 + (0.13

| Gp*|is the complex shear modulus of binder in Pa and |G,* |is the complex shear modulus of binder

in glassy state in Pa, which is assumed to be 10° Pa.
5. Evaluation of the Accuracy of the US Models for Australian Asphalt Mixes

Four approaches were adopted to assess the reliability of the nominated models: (i) Plotting
measured versus predicted dynamic modulus values and comparing them with the line of equality
(LOE), (ii) evaluating goodness-of-fit statistics, (iii) analyzing the residuals and (iv) analyzing bias



statistics. A total number of 1344 data points were used to assess the performance of the nominated
predictive models. In some research, logarithmic scale is chosen to present the results, most likely
because of a relatively wide range of dynamic modulus values, also due to the fact that both Witczak
models (1-37A and 1-40D) estimate the log |E*| rather than the actual values [3, 5, 13, 16]. In this
study the dynamic modulus values illustrated in the figures and tables are in arithmetic scale as it
was believed that the logarithmic scale may not realistically reflect the level of errors developed by
the models [20].

5.1. Measured Versus Predicted Dynamic Modulus

First, the predicted dynamic modulus values were plotted against the measured values along with
LOE to examine the scattering of the data. A good predictive model will produce results following
the LOE in an oval shape [21]. Figure 2 shows the comparison between measured and predicted
dynamic modulus values by the nominated models. Plots were segregated by temperature to
evaluate the robustness of the models to predict dynamic moduli at each test temperature. The
goodness-of-fit statistics of the model predictions at different temperatures are also listed in figure
2.

Measured vs. Witczak 1-37A Model Measured vs. Hirsch Model
30000 {temperature| R Se/S, Rating * 5 Degrees 30000 {Temperature| R? Se/S, Rating * 5 Degrees
= 5°C -1.34 155 | VeryPoor 420 Degrees = 5°C -7.02 2.84 | Very Poor 420 Degrees
= 20°C 0.29 0.86 Poor ® 35 Degrees =] 20°C -0.78 134 | VeryPoor =35 Degrees
2 25000 5 08 YT} Good 50 Degrees 2 25000 35°C 0.49 0.72 Fair ® 50 Degrees
5 50°C 0.02 100_| Very Poor . 5 50°C 073 053 Good Pid
3 20000 < 3 20000 P
[} S -,
= 2 e
Q L
£ 15000 £ 15000 - = 04158
3 |3 PR o R2=0.79711
& 10000 1 & 10000 St o
3 y = 0.6882x 3 - - Y R
5 R?=0.92758 5 o~
g 5000 1 g 5000 1
a a
0 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Measured Dynamic Modulus (Mpa) Measured Dynamic Modulus (Mpa)
(a) (b)
Measured vs. Witczak 1-40D Model Measured vs. Alkhateeb Model
30000 = 7
Temperature R S, Rating @5 Degrees
120000 * 5 Degrees . 5°C -7.09 2.85 | Very Poor 420 Degrees
E 420 Degrees S 25000 || 20°C -0.58 126 | VeryPoor =35 Degrees
S 100000 ’: ® 35 Degree s 35°C 0.68 057 Fair © 50 Degrees
= * % © 50 Degrees e 50°C 0.77 0.48 Good . L —=nnearees |
3 Y 4 2
S L 26 s S 20000
3 80000 o5t - 2.3602x - 3 R
s 2085594 7 = R4
2 -2 15000 -
E 60000 . g ’ y =0.4239x
g - £ Pid R? = 0.72423
S 40000 i 2 10000
§ . 4 Temperature R S./S, Rating g
% ’ 5°C -59.98 7.90 Very Poor 5
@ 20000 s 20°C -4.12 229 | VeryPoor £ 5000
a 35°C 0.86 0.38 Good a
0 50°C 0.85 0.39 Good
0 20000 40000 60000 80000 100000 120000 0
0 5000 10000 15000 20000 25000 30000
Measure Dynamic Modulus (Mpa)
Measured Dynamic Modulus (Mpa)

(c) (d)

Figure2. Predicted versus measured dynamic modulus for four nominated models: (a) Witczak 1-37A, (b)
Hirsch, (c) Witczak 1-40D and (d) Alkhateeb



As can be seen from figure 2, Witczak 1-37 A, Hirsch and Alkhateeb generally under predicted
dynamic modulus values; on the other hand Witczak 1-40D over predicted the |E*| to a great
extent. The magnitude of over/under prediction of the models varies with temperature and
generally broadens at lower temperatures (higher dynamic modulus values). Note that due to
relatively larger values predicted by the Witczak 1-40D model, the axes scales for this model are set
differently from the other three in figure 2.

To get an approximate overview of the level of over or under prediction of the models, linear
constrained trendlines (lines with zero intercepts) were fitted to data in the predicted-measured
space (figure 2). The conformity of trendlines with LOE (with the slope of unity) shows how the
estimations match the actual data. The overall performance of Hirsch and Alkhateeb models at
different temperatures were relatively similar; they both under predicted |E*| by approximately
58%. Witczak 1-37A predictions were the closest to the line of equality, yet still under predicted the
values by approximately 31%. On the other hand the second Witczak model (1-40D) overestimated
dynamic moduli by about 136%. Dongre et al. found that Hirsch and Witczak 1-40D models tend to
under predict |E*| when the air voids or the binder content of the mix is more than the mix design
[22].

5.2. Statistics of Goodness-of-Fit

To evaluate the goodness-of-fit statistics, standard error of estimate (S.), standard deviation of the
measured values (S,), the coefficient of determination (R%) and error between predicted and
measured dynamic modulus (e) were calculated for each model using equations 9-12 [23]. S, is an
indicator of likely error in the prediction and R? is a measure of the model accuracy. The standard
error ratio (S¢/S,) was also determined, to facilitate the evaluation of the nonlinear models [1, 20].
Witczak et al. and Singh et al. have used S./S, and R? criteria in their studies to subjectively classify
the performance of the models for their dataset [1, 3] which is presented in table 4. In equations 9-
12, E*,,, is the measured dynamic modulus, E*; is the estimated dynamic modulus, E* is the average
of measured dynamic moduli, n is the size of the sample and k is the number of regression
coefficients of the model.

e (EpiBim)’
= _ i=1\"pi~ “mi
Sy (9) Se = o= (10)
2
= L EX. 2 _ 4 _ (n-k-1) (Se
e (Epl Eml) (11) Re=1 (n—-1) (Sy) (12)

Details of the goodness-of-fit statistics for the studied asphalt mixes are listed in table 5. As can be
seen from the table, Witczak 1-37A has the highest R? and the least sum of squared error (SSE),
which indicates that its performance is relatively superior to the other models, however, according
to Witczak et al. classification criteria, it still cannot be classified as an “Excellent” fit to data. A
substantial level of sum of squared error (SSE) and S¢/S,, and low R? values calculated for the Witczak
1-40D, Hirsch and Alkhateeb models indicate that their overall performance can be rated as poor or
very poor. Negative average error for the Witczak 1-37A, Hirsch and Alkhateeb models reflects the
fact that predictions of these models were consistently lower than the measured values that could
be visually observed from LOE plots (figure 2). Similarly, the positive average error of Witczak 1-40D
indicates the over predictive nature of this model.
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Table 4. Criteria for subjective classification of the goodness-of-fit statistics

Criteria R (%) S./S,
Excellent >90 <0.35
Good 70-89 0.36-0.55
Fair 40-69 0.56-0.75
Poor 20-39 0.76-0.90
Very Poor <19 >0.90

The negative R? of the Witczak 1-40D model implies that for this model, sum of squared errors (SSE)
is more than total sum of squares (SST); in other words horizontal line of y= E*, (average measured
dynamic modulus) fits the data better and produces less error than the investigated nonlinear
model. This suggests that the utilized model is not necessarily a good fit for the particular selected
dataset. Robbins and Timm also encountered similar issues with the Witczak 1-40D model in their
studies [16].

Table 5. Goodness-of-fit statistics of the original predictive models

Criteria Witczak 1-37A Witczak 1-40D Hirsch Alkhateeb
Overall 0.49 2.29 0.88 0.87
5 Degrees 1.55 7.90 2.84 2.85
se/sy 20 Degrees 0.86 2.29 1.34 1.26
35 Degrees 0.43 0.38 0.72 0.57
50 Degrees 1.00 0.39 0.53 0.48
Overall 0.76 -4.19 0.23 0.24
5 Degrees -1.34 -59.98 -7.02 -7.09
R’ 20 Degrees 0.29 -4.12 -0.78 -0.58
35 Degrees 0.82 0.86 0.49 0.68
50 Degrees 0.02 0.85 0.73 0.77
SSE 1.75E+10 3.79E+11 5.59E+10 5.51E+10
Average |E*,| 5953 16555 3812 4000
Other Average Error -2007 8595 -4147 -3959
Statistics  Slope 0.618 2.688 0.342 0.332
Intercept 1030.8 -4837.5 1090.0 1357.8
Rating Good Very Poor Poor Poor
Average measured |E*,|: 7959

Total Sum of Squares (SST):  7.29E+10

Unlike the overall performance of the models, the robustness of the models was considerably
different at various levels of temperature. As the goodness-of-fit statistics in figure 2 and table 5
suggest, although the overall performance of Witczak 1-37A can be classified as good, only its
predictions at 35°C are consistent with the measured values (R? = 0.82) and the model performance
at other temperatures is significantly inaccurate. Similarly, Hirsch and Alkhateeb models seem to be
applicable only at 50°C, providing R? of 0.73 and 0.77 respectively; their under prediction becomes
significant at lower temperatures. Witczak 1-40D overall goodness-of-fit statistics show a very poor
performance, however its accuracy at 35 and 50°C is significantly more reliable than at lower
temperatures, providing R* of 0.86 and 0.85 respectively, which in fact is higher than the other
models. However, its substantial over predictions at 5 and 20°C influence its overall performance
and make it unreliable on the whole. Singh et al. demonstrated that Hirsch and Alkhateeb models’
predictions were reliable at low temperatures whereas both Witczak models (1-37A and 1-40D)
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performed well at high temperatures only. They noted that all models were inaccurate at low
temperatures and high air voids [3].

5.3. Residual Distributions

Figure 3(a) illustrates the cumulative distribution of residuals for each model. Ideally, residuals are
expected to be of a small width, to be symmetrical and to center at nil [16]. Witczak 1-37A residuals
range from -11.3 to 1.5 GPa giving a span of 12.8 GPa, which is quite different from the later model
(1-40D) that gives approximately 6.4 and 3.9 times greater width than the Witczak 1-37 and Hirsch
models respectively. Hirsch and Alkhateeb’s residual distributions show a similar trend, which range
from -20 to 1 GPa. More than 70% of Witczak 1-40D residuals are in the positive area, which is an
indication of its considerable over estimation. The 50" percentile of Witczak 1-40 was the smallest
one (375 MPa), followed by Witczak 1-37A with -887 MPa and that of Hirsch was the furthest from
nil (-1957 MPa). Overall, it appeared that none of the models had the residuals cumulative
distribution of a robust model.

5.4. Overall Bias of the Models

Another measure to evaluate the performance of the models is to look at their overall bias by
comparing the slope and intercept of non-constrained linear fits to the predicted versus measured
dynamic modulus data. The slope and the intercept of a reliable model would be close to 1 and zero
respectively. Figure 3(b) shows the average error, slope and intercept of non-constrained linear
trendlines for each model. The divergence between slopes and the unity suggests the dependence of
prediction errors to actual values [13]. The larger the intercepts, depending on their sign, the more
the estimations are over or under predicted. Slopes ranges are as low as 0.33 for the under
predictive Hirsch and Alkhateeb models to as high as 2.69 for the considerably over predictive
Witczak 1-40D model. The intercepts of trendlines with slopes below unity are positive (Witczak 1-
37A, Hirsch and Alkhateeb) but for the Witczak 1-40D model the intercept is negative to make up for
the steep incline. Overall it seems that all models exhibit a significant amount of bias in their
predictions. Ceylan et al. compared the overall bias of both Witczak models with two artificial neural
network (ANN) models and found a relatively moderate amount of bias in Witczak models compared
to studied ANN based models [20]. From the results obtained in the first stage of this study, it can be
concluded that the dynamic moduli estimated by the four nominated models are not accurate or
robust enough to be used to predict dynamic moduli of typical Australian asphalt mixes, which
warrants some modification to the models to improve their performance for the studied material.

Part of the inaccuracy and errors developed in the models’ predictions can be attributed to different
databases based on which the studied models were developed and calibrated, i.e. binder type and
aging condition; aggregate size, type and gradation; shear modulus and dynamic modulus test setup
(equipment, temperature and loading rate) and specimen size; mix design and compaction method;
and volumetric properties of the mixes (air voids, VMA and VFB) could partially be held responsible
for the discrepancies observed in the |E*| predictions and laboratory measurements for the
Australian asphalt materials. To find out the key input parameters into the models a sensitivity
analysis was carried out which is discussed in more details in the next section.
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Figure3. (a) Cumulative distribution of Residuals (b) Overall bias in Witczak 1-37A, Witczak 1-40D, Hirsch and
Alkhateeb models

6. Sensitivity of Model Input Parameters

Sensitivity analysis is a technique to determine the influence of the input parameters of a model on
the outputs; it also reveals the correlation between the uncertainties between the inputs and the
outputs of the model. Therefore it can help determine the input parameters of a model that are
required to be measured more precisely to improve the accuracy of the model. Spearman rank
correlation index and the extreme tail coefficient were used to evaluate the sensitivity of the models
to their input parameters.

Spearman rank correlation index (p) is a non-parametric technique that tests the strength of a
relationship between two sets of data, which is calculated by using equation 13. The absolute value
of p quantifies the strengths of the correlations between two variables; when p approaches to unity,
the variable has the maximum impact on the model output and when it is closer to zero, the effect is
marginal. Also the sign of p indicates that the variable is either directly or inversely proportional to
the outcome; a positive value indicates that the correlation is directly proportional and a negative
value shows an inversely proportional correlation. In equation 13, p is Spearman rank correlation
index, d; is the difference in the ranks between the input and the output values in the same data pair
and n is the number of data [24].

pzl_(szd?) (13)

nnz-1)

Tornado plots of the Spearman index of the studied models are illustrated in figure 4. As can be seen
from the figure, the binder properties inputs into the model (i.e. viscosity, complex shear modulus
and phase angle) had the most significant effect on the predicted dynamic moduli for all the
predictive models. The high positive p values of viscosity and complex shear modulus indicate that as
the viscosity and G* of the binder increases, the predicted dynamic modulus value will also intensify.
Phase angle had a high yet negative p value for Witczak 1-40D which indicates that as the viscous
behavior of the binder increases the predicted dynamic modulus decreases; for a particular type of
binder, this can happen due to an increase in temperature or a drop in loading rate. Figure 4 also
shows that the aggregate and volumetric properties of the mixes had relatively marginal effects on
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the models predictions. V, (%Air Voids) and p,go (Passing the No.200 sieve) had the lowest p value in
both Witczak models and thus had a minimal influence on the predicted E*. Also the sensitivity of
Hirsch and Alkhateeb’s models’ predictions to VMA and VFB are insignificant.

Witczak 1-37A Tornado Plot Witczak 1-40D Tornado Plot
n I 0888 1Gb*| N 0.994
-0.964
Fr B 0390 sb I
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Figured. Tornado plots of Spearman rank correlation index (a) Witczak 1-37A model, (b) Witczak 1-40D model,
(c) Hirsch model and (d) Alkhateeb model

Extreme tail analysis is a statistical tool to evaluate the extent to which the input parameters
contribute to the extreme values of the predictions; therefore it can assist with improving the
accuracy of the model by controlling the uncertainties of the parameters that cause the tail of the
models output distribution. To identify the main contributors to the extreme values of the
predictions, the normalized a coefficient was calculated for each input parameter of each model
using equation 14. The top high 5% and bottom low 5% of the predicted dynamic modulus values
were considered as the right and left tails respectively. The effect of parameters with |a| values of
greater than 0.5 are considered as significant. In equation 14, Mediangop is the median of the input
in the group, Medianty, is the median of the input in the total dataset and orqa is the standard
deviation of the input in the total dataset [24].

(Median(;roup—Medianroml)
o=

OTotal

(14)

The results of the extreme tail analysis (table 6) confirm the results from tornado plots. For Witczak
1-37A, viscosity and frequency are the primary contributors to the high values of dynamic modulus;
also V, seems to have an insignificant effect on extreme values in both Witczak models.
Furthermore, complex shear modulus is the main contributor to extreme values of Witczak 1-40D,
Hirsch and Alkhateeb predictions. Extreme tail analysis results also suggest that generally, input
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parameters do not have a significant effect on forming the low extreme values of dynamic modulus;
the only exception is &, in Witczak 1-40D which significantly contribute to extremely low |E*|
predictions.

Table6. Extreme tail analysis details of models’ input parameters

Witczak 1-37A Inout Witczak 1-40D Inout Hirsch Alkhateeb
. . npu npu P P
Left Tail  Right Tail P Left Tail  Right Tail P Left Tail  Right Tail Left Right

n  -0.0109 2.4012 |Gy,*| -0.2238  2.5831  |G,*| -0.4654  1.9326 -0.4654 1.9726
f  -0.3301  2.5039 5, 08564  -1.8269 VMA 0.2177 -0.7360  0.0933 -0.5079
V, 00921 -02762 Vv, 01204 -04746 VFB -0.0561  0.8941

Voot 0.4093  -0.1488  Vpey  0.4093  -0.1488

pss  0.0000 03685  psy,  0.0000  0.3685

pis -0.2625 02625  py 01312 0.7874

ps  -0.1109  0.3326 o, 01109  0.7760

Pyo  0.0000  0.0409  pyo  0.0000  -0.6817

Results from sensitivity analysis suggest that binder properties such as viscosity, complex shear
modulus, and binder phase angle play an important role in the predicted |E*| values. This can
partially explain the discrepancies between the measured and the predicted dynamic moduli by the
nominated models as the binder databases based on which the models were developed have been
entirely different.

7. Summary and Conclusion

In this study, 1344 data points of dynamic modulus were determined for 28 Australian typical dense
graded asphalt mixes and used to evaluate the accuracy and feasibility of four commonly used
dynamic modulus predictive models (Witczak 1-37A, Witczak 1-40D, Hirsch and Alkhateeb). It was
found that the overall performance of Witczak 1-37A was more accurate than the other studied
models yet it under predicted the dynamic modulus of the mixes by approximately 31%. The overall
predictions of Hirsch and Alkhateeb at different temperatures were similar; they both under
predicted |E*| by approximately 58%. On the other hand the second Witczak model (1-40D)
substantially overestimated dynamic moduli by 136%.

Unlike the overall performance of the models, robustness of the models at different temperatures
varied considerably. Generally, it was found that the models perform fairly poorly at low
temperatures (5 and 20°C). Witczak 1-37A can only reliably predict dynamic modulus at 35°C. Hirsch
and Alkhateeb predictions could only be classified as “good” at 50°C. Although the overall goodness-
of-fit statistics of Witczak 1-40D was very poor, its predictions at 35 and 50°C were the most
accurate of all.

The level of bias and error developed in the models suggested that the application of the nominated
models to predict |E*| for Australian mixes is impractical. In general, this study has found that the
four nominated models performed fairly poorly in predicting dynamic modulus for the studied
asphalt materials. It is believed that part of the inaccuracy and errors observed in the models
prediction can be attributed to the different material databases based on which the studied models
were developed and calibrated.
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Sensitivity analyses on the nominated models showed that the models’ predictions are highly
dependent on the inputs related to binder characteristics (complex shear modulus, phase angle and
viscosity). P,go and V, were found to have minimal influence on both Witczak models’ predictions.
Also the effect of volumetric properties of the mix (VMA and VFB) in Hirsch and Alkhateeb models
were marginal.

The overall performance of the studied models suggested that they are not robust enough for
Australian asphalt mixes. Current research at SUT has focused on the development of improved
dynamic modulus predictive models to enable more accurate predictions of dynamic modulus for
Australian asphalt mixes.
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