Australian Asphalt Pavement Association

Brisbane
22–25 September 2013

AAPA Pavement Research &
Technology State of Play & Future
Directions - in liaison with Client
Organisations
lan Rickards
AAPA Consultant

Asphalt Pavement Solutions – for Life Project

Development of a validated
Mechanistic Design Procedure for
Long Life Asphalt Pavements in
Australia

An overview of status and foreseen outcomes

APS-fL: Local Background

- LTPP Projects AAPA and SRA's since 1980's
- Regular positive reports on the studies
- Sharp & Tepper 2001
- Youdale 2004
- Foley 2008
- Rickards 2009
- Armstrong & Rickards 2010
- AAPA Study Tour 2010

AAPA

APS-fL Project Elements

- Literature Review
- Project Management Team
- National Asphalt Materials Characterisation
- International Validation NCAT and others
- Calibrate model against LTPP data
- Information Dissemination
- LLAP Design Software and Manual
- LLAP Construction Guidelines
- Environment & Sustainability Factors
- Education and promotion

Outcomes LONG LIFE ASPHALT PAVEMENT PRINCIPLES Do LLAPs exist? Is there a threshold design thickness? Are stable/decreasing deflection and curvatures characteristic of LLAPs?

2011 MASTER CLASS IN FLEXIBLE PAVEMENTS Enabling Features Is the cumulative strain distribution suitable as a transfer function? (validate for high temp) Is the dynamic modulus (E*) a suitable means of materials characterisation? (correlate with overseas materials) Do not include asphalt curing as part of the design method. (too hard, but impact is conservative)

2011 Master Class - Summary of Outcomes

- The principles of Long Life Asphalt Pavements are firmly established globally.
- The means of structural design, including materials characterisation and transfer functions are available but require harmonisation to suit local conditions.
- Software can be readily developed to align with currently used Austroads methodology.
- Strong links were forged with overseas experts in this field.

Australian Materials Characterisation

Tests

- Dynamic modulus E* using AMPT
- Binder complex shear modulus G* using DSR

Australian Materials Characterisation

Materials tested

- Commercial project mixes ex production plant (from all states)
- 28 mixes in total: 14 x AC14: 14 x AC20
- Binders: C 320; C 450; C 600; A15E; Multigrade

Master Curves Confidence Limits

- Based on grouping common Australian production mixtures
- Confidence based on t-distribution around common mixtures
- No statistically significant difference between Australian mixtures with same binder class

Lab to Field Modulus

- No laboratory test (E* or fatigue) can fully capture the effects of:
 - Loading Time
 - Temperature distributions
 - State of stress / confinement etc
- A tentative relationship has been established between the dynamic modulus in the lab and the field

Pavement Temperature Spectrum

- Pavement temperature spectrum is a critical design element
- E* can be determined over the spectrum to enable the calculation of the strain distribution
- Austroads commissioned ARRB TR report "Pavement Temperature and Load Frequency Estimation" (Denneman)

The Calculation of the Cumulative Distribution of Strain

- Select candidate pavement profile and materials
- Determine the cumulative distribution of pavement temperature
- Determine the E* values over the temperature spectrum specific to the mix used and traffic speed
- Use CIRCLY to calculate asphalt strain over the temperature spectrum and plot cumulative distribution
- Adopt design if to the left of the limiting criterion

APS-fL validation study VALMON Data

- · Outline of validation procedure
 - Assemble and review data to ensure adequate deflection data and details of pavement structure
 - Estimate pavement temperature gradient relative to surface temperature data using local model
 - Conduct back analyses of raw deflection data to estimate asphalt modulus at temperature at time of test
 - Develop master curves extrapolating from back analysed data (generally limited range) at a frequency appropriate to traffic speed
 - Estimate pavement temperature spectrum from local climatic records
 - Determine modulus values over the temperature spectrum
 - Calculate cumulative distribution of strain under legal axle limit 11.5t
 - Compare with NCAT and modify as appropriate

Flexible Framework of APS-fL

Framework Goal is to be flexible to adopt changes and developments as they appear along the path of the project elements

- Literature Review
- Material Characterisation
- Validation of modulus with field measurements
- Temperature with depth profile
- Frequency with depth
- Strain calibration
- Fatigue Damage Equation
- Seasonal analysis
- Damage Threshold

 Cumulative distribution of strain
 - Healing Threshold Strain
- Calibration and Validation

Summary

- · Work on the development of a validated LLAP design process is well underway
- The technical elements of the process have been and will continue to be subjected to peer review
- The active involvement and contributions from Austroads and ARRB TR experts is welcome and constructive
- The asphalt characterisation study is complete and provides a basis for comparison with international

Summary

- The properties of Australian asphalt materials have been established and are available for design purposes.
- The cumulative distribution of strain is considered to be an improved limiting design criterion avoiding the uncertainty of endurance limit and healing models
- · Work aimed at calibrating the limiting cumulative distribution is advancing based on NCAT and UK data
- · This work is unique in Australian history

Summary

- The framework of the project is flexible we are committed to the implementation of a LLAP design process – and if there is good evidence for us change direction then so be it
- The project team is confident we can soon make recommendations to deliver change based on the work to date and the considerations of the Master Class

Australian Asphalt Pavement Association

Brisbane 22–25 September 2013

AAPA Pavement Research & Technology State of Play & Future Directions - in liaison with Client Organisations

Ian Rickards AAPA Consultant

