The Development of an Evaluation Protocol for Warm Mix Asphalt Pavements

Prepared by: Kieran Sharp
Presented by: Erik Denneman
ARRB Group

Warm mix asphalt: background

- Increasing emphasis on need to reduce emissions and energy usage which contribute to global warming
 - WMA a good option
- However, acceptance of WMA depends on:
 - Confirmation of environmental benefits
 - Evidence that field performance is at least equal to that of HMA
 - Assurance regarding possible impact of use of WMA on current specifications
- Independent review sought by road agencies

Austroads research project: tasks

- Develop draft WMA evaluation protocol:
 - Guidance on the evaluation of WMA technologies and processes
- Assemble information on current field validation projects
 - Review overseas and Australian studies
 - Determine need for APT trial
- Conduct field validation of WMA and HMA pavements
- Literature review of existing carbon emission calculators
 - Recommend a system for inclusion in WMA evaluation protocol
- Finalise WMA evaluation protocol

WMA evaluation protocol

- Purpose of WMA Evaluation Protocol:
 - Provide a guide to the evaluation of specific WMA technologies and processes such as additives and foamed bitumen
- Protocol sets out the conduct of appropriate laboratory tests and field validation projects in order that the performance of WMA and conventional HMA can be compared
- Protocol an evaluation tool only; not a specification
- Environmental assessment of the impact of WMA not addressed owing to lack of sufficient quality data under local conditions

Review of field/validation trials

- About 120 references identified addressing field testing of WMA in USA, Canada, Europe, Asia and Australasia
- When criteria applied, only about 20% provided sufficient information to allow detailed review
- General trend suggested that performance of WMA was at least equivalent to HMA
- APT conducted in USA
- Limited information re usage in Australia (SRAs or industry)

WMA technologies

- About 50 registered WMA technologies in the USA (only three in 2005) and almost all States are conducting demonstration trials (only 15 States in 2007)
 - WMA technologies associated with water-bearing, chemical and organic additives have received more attention than technologies using water-based mechanical systems
- Commercially-available WMA technologies identified and grouped into six categories depending on:
 - Additive content
 - Aggregate drying temperature
 - Maximum bitumen temperature
 - Requirements in terms of plant modifications
WMA technologies

- Sequential aggregate coating and binder foaming
 - low energy asphalt (LEA1)
 - low emission asphalt (LEA2)
 - WAM-Foam®
- Water-based binder foaming
 - AQUABlack®
 - Double Barrel® Green
 - Terex®
 - Ultrafoam GX®
- Binder foaming with water-bearing additive
 - Advera®
 - Aspha-Min®

WMA technologies

- Chemical additive (surfactants / emulsions)
 - CECABASE RT®
 - Evotherm® / Evotherm 3G
 - Rediset® WMX
- Organic additives
 - Asphaltan B
 - Sasobit®
 - LEADCAP®
- Combined binder modifier and organic additives
 - Thiopave®
 - TLA-X®

WMA field evaluations

- Three types of field trials of WMA technology identified:
 - development (least detailed)
 - demonstration
 - validation/implementation (most detailed)
- Each has a different framework depending on:
 - technology developed
 - asphalt producer’s marketing strategy
 - road agency’s implementation strategy
 - available funding

WMA field evaluations

- Several asphalt producers and road agencies have collaboratively conducted APT trials of WMA and HMA
 - National Center for Asphalt Technology (NCAT) & University of California Pavement Research Center (UCPRC)
 - work to date has suggested that the performance of WMA is at least equivalent to that of HMA; more work planned
 - no immediate need for an accelerated pavement test in Australia
- Published material relating to demonstration or validation trials in Australia limited
 - QTMR, RMS NSW, Brisbane City Council
 - NZTA and one industry member in NZ
 - many industry trials (mainly LG) but details sketchy

Validation project (Melbourne)

- Purpose: to compare performance of HMA and WMA pavements under real traffic conditions
 - 2 additives and 2 foamed WMA
 - 3 HMA, 4 WMA (0% RAP), 3 WMA (with up to 50% RAP)
 - 3 major asphalt suppliers (3 aggregate sources)
 - HMA: standard VicRoads mix
 - VicRoads Metro North-West provided field site
 - Old Hume Highway, Campbellfield
 - Major effort by AAPA members and Austroads

Concerns regarding the use of WMA

- incomplete drying of aggregate (especially with absorptive limestones)
- potential for increased moisture susceptibility when using WMA processes that involve the use of water
- effects of chemical additives on long term performance of the binder
- ability of WMA to provide enough radiant energy to heat the reclaimed asphalt component in mixes containing RAP
- general lack of information regarding long term performance of new asphalt mix designs (e.g. high RAP content or rubber asphalt)
- Laboratory trials focusing on moisture susceptibility, rut resistance and durability
View and layout of validation site

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Lane 1</th>
<th>Lane 2</th>
<th>Lane 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slow</td>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WMA</td>
<td>WMA</td>
<td>RAP WMA</td>
</tr>
<tr>
<td></td>
<td>HMA</td>
<td>HMA</td>
<td>HMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WMA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sites constructed over three nights in April 2010

Site conditions
- site approximately 1.3 km long
- constructed along three lanes, each 3.5 m wide
- length of sites varied from 160 m to 215 m
- thin (40 mm thick) layer placed over existing pavement
 - existing site milled and patched prior to placement of mixes
- sites laid out so WMA and HMA mixes subject to same testing conditions, including traffic levels
 - AADT = 23,000, incl. ~ 11% CVs (2010)
 - posted speed limit = 80 km/h

Validation project: data collection
- Cracking/patching data collected before construction
- Temperature data (ex auger, field) collected during construction
- Condition surveys (FWD, MLP) before/after construction and about every 6 months
 - roughness, rutting, texture, strength
- Cracking surveys (cameras on MLP, manual surveys)
- Laboratory testing of samples manufactured during construction (industry)

Condition data (roughness, rutting)

Validation project: laboratory testing
- Industry participants conducted own laboratory testing in line with draft Protocol
 - observers from SRAs and ARRB present during testing

Sampling from bulk sample (time of asphalt production, asphalt temperature, etc.)
- Deformation resistance (wheel-tracking)
- Mixing, compaction and conditioning – Gyropac, Marshall
- Bulk density – 1 hour conditioning
- Modulus (indirect tensile) – AS2891.13.3-1995
- Air voids and bulk density at design binder content – AS2891.13.2005
- Mix density / voids free bulk density
- Moisture content – VicRoads RC211.01
- Moisture sensitivity / stripping potential – Tensile Strength Ratio / RTA T649
- Viscosity of recovered bitumen – ARRB Test Method No. 7 & AS2341.5
 - Field density of cores

Crack survey - September 2011

- Almost all cracking identified developed over existing cracks, regardless of asphalt type
- Slightly more cracking in HMA than WMA

Crack survey - September 2011
- Bus bay south of intersection (Type V asphalt)
Validation project: laboratory testing

- Protocol too demanding in terms of what can be practically achieved
- Need hierarchy of testing depending on type of trial, e.g.
 - development (least detailed)
 - demonstration
 - validation/implementation (most detailed)
- Need to set minimum requirements and then ‘desirable’ requirements

Summary

- Performance of WMA and HMA pavements at validation site in Melbourne excellent after 18 months
 - almost all observed cracking reflective from original surface
 - draft protocol in line with requirements for a ‘validation’ trial
- Laboratory testing conducted in line with draft Protocol
 - Protocol too demanding in terms of what can be practically achieved
 - need to set minimum requirements and ‘desirable’ requirements
- Monitor overseas projects (e.g. NCHRP, NCAT, UCPRC) and examine outputs in terms of possible application to Australia
- Premature to recommend a carbon calculation system for inclusion in Protocol
 - need to develop data sets to allow local carbon dioxide emissions factors for the main components of road construction