

Non-standard asphalt mix Many of the properties of a conventional asphalt mix Non-designed and controlled grading (single crusher run) Lower binder content (2.5 to 4.5% by mass) Strength structural coefficient: 0.35 vs. Granular (0.12) and HMA (0.44) Thickness: vs. Foamed bitumen (115 to120%) and DG20 (80 to 90%)

Benefits

- Reduced construction times (volumes, curing,
- Lower cost and emissions than conventional asphalt
- High **stability** (at intersections or restricted areas)
- Significantly reduced effect of wet weather on construction.
- Thinner pavement depths utilise existing formation widths
- · Allow construction under traffic
- Cost (15% less than DG20 for same thickness)

Property	Unit	Limit	Value	
			PSBTB20	PSBTB28
Wheel Tracking				
rut rate	mm/kCycle	Maximum	≤ 0.35	≤ 0.35
rut depth	mm	Maximum	≤ 5.0	≤ 5.0
Indirect tensile	MPa	Range	To be	To be reported
@25°C	"" "	rtunge	reported	
Sensitivity to Water	%	Minimum	80	80
Fatigue life of compacted bituminous mixes subject to repeated flexural bending	Cycles to Failure at 50% decrease in initial modulus	Report	Report	Report

failures

aurecon THEO

Specifications

- Project specifications developed by TMR, industry (AAPA) and project team
- Based on Queensland TMR MRST30 for dense-graded asphalt (DG20 or DG28)
- · Main differences
 - Grading (single run crushed stone) and tolerances
 - Air void content (target)
 - Compaction (target)

Properties

- · Volumetrics & Marshall
- · Moduli
- · Deformation properties
- Fatigue
- · Moisture susceptibility & permeability

Volumetrics & Marshall						
Property	Specification	Minimum	Maximum	Average		
Stability (kN)	>7.5kN	4.2	29.5	11.7		
Flow (mm)	>2mm	1.7	5.7	2.9		
Stiffness (kN/mm)	>2	1.3	8.1	4.1		
Air Voids (%)	4.5 - 5.5% (target)	2.4	10.5	5.7 5		
Voids in mineral aggregate (VMA) (%)	>13.5%	9.8	17.3	13.2		
Voids Filled with Binder (VFB) (%)		39	85	57		
Compaction density (CV)				93%		
Layer (top)	>93%	90.3	97.0	93.1		
Layer (middle)	>93%	90.0	95.7	93.1		
Layer (bottom)	>93%	90.0	96.3	92.9		

Other properties

- Rut depth: < 3 mm at binder contents up to 5%
- Dry and wet modulus (at 25°C and 6% voids): ±6,000 MPa
- Dry/wet ratio > 90%
- Initial flexural modulus (at 20°C and 5% voids): ±13,000 MPa
- Wet core ITS (at 6% voids): ±1,100 kPa
- · Reduction in modulus with increase in air voids

aurecon THEO

Summary Met design and construction objectives BTB has benefits if applied appropriately One of a number of bituminous bound pavement layer options, e.g. densegraded, foamed bitumen Design approach and moduli – probably conservative

