Bitumen Stabilised Materials: Will theory and practice ever meet?

Kim Jenkins
AAPA Brisbane, Australia
23rd – 25th September 2013

Acknowledgements
- Alan Lynch (main author) Royal Haskoning DHV
- SANRAL through SAPDM aka “Godzilla”

Theory versus Practice

Skills Gap
- technology growing gap
- status/skills of the operator physical involvement

Human Resources Theory vs Practice
- Researcher
- Contractor

Early South African pavements
Technical Challenges
- Reflective Cracking
- CEMENT STABILISATED BASE
- Selected subgrade layer
- 40mm HMA SURFACING
The South African “inverted” pavement

The Concept

- **Cement Stabilised Subbase**
- Selected subgrade layer
- **40mm HMA Surfacing**
- **Crushed Stone Base**
- **Higher Compaction**
- **Higher Mr**
- **Water!!!**

The South African “upside-down” pavement

The Upgrade

- **Bitumen Stabilised Base**
- Selected subgrade layer
- **40mm HMA Surfacing**

Distress Mode?
- Unbound
 - Permanent deformation (shear/ruts)
- Bound
 - Fatigue (cracking)

Durability??

Key Characteristics

Bitumen Stabilised Materials

1. Non-continuously bound (bitumen saturation)

 - ITS
 - ITS_{ei}
 - BSM Binder Content

2. Deformation resistance

 - Shear stress
 - Friction angle
 - Higher Cohesion
 - Mohr-Coulomb

3. Moisture resistance

 - Shear stress
 - Effect of Moisture
 - Cohesion Loss_{ei}
 - Normal stress
 - C = Cohesion
 - μ = Friction angle
4. Stress dependency (BSM-foam)

- Foamed Bitumen = 2% in CDW

![Graph showing stress dependency](image)

5. Visco-elasticity (BSM-foam)

- Fatigue cracks
- Rutting

![Graph showing visco-elasticity](image)

6. Flexibility vs Cement% (BSM-foam)

- Strength and flexibility
- Cement < 1%?

![Graph showing flexibility vs cement%](image)

7. Time and moisture dependency (BSM-emulsion)

- Evolutionary...
- Durable?
- Time and moisture dependent

![Graph showing time and moisture dependency](image)

BSM is a material with multiple personalities!

- Deformation Resistant
- Flexible...
- Stress dependent
- Evolutionary...
- Time dependent
- Non-continuously bound?

Can 1.5% cement work?

BSM-foam + 1.5% cem using cracked CTB: 2 years of traffic
3. Material Performance

Closing the loop

Awareness

Implement

Acquire knowledge

Develop tools

Ref: K Jenkins
PhD Univ Stell
Mulusa, Univ Stell 2009
250mm CIPR: 3% Foam 1% Cem

90mm Asphalt

In-situ recycled crushed stone base material
NB: 1% cement and 2.3% foamed bitumen
SB: 1% cement and 3% bitumen emulsion

N7 Cape Town
2002 Rehab and HVS TRIALS

Mr back-calc vs time (N7)

Mr versus Base Layer Index

Trial Section R35 2012 - 2013

200mm Cemented Base SB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400

200mm BSM Foam (2.4%b, 1%c) SB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400

200mm BSM Foam (2.4%b, 1%c) NB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400

175mm BSM Foam (2.4%b, 2%c) NB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400

200mm BSM Emulsion (2.4%b, 2%c) SB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400

200mm BSM Emulsion (2.4%b, 1%c) NB

Days since Construction

Average Stiffness

Rainfall (mm)

Prime

Asphalt

Cape Seal

Traffic

0 50 100 150 200 250 300 350 400
Back-calc vs Core triaxial

![Graph showing back-calculated stiffness vs core triaxial stiffness]

Seasonal stiffness variation

![Graph showing seasonal stiffness variation]

Seasonal stiffness variability

![Graph showing seasonal stiffness variability]

BSM-foam

![Graph showing BSM-foam stiffness]

200mm Cemented (2%c, 1%l) NB

![Heatmap showing spatial and temporal variation]

200mm BSM foam (2.4%b, 2%c) NB

![Heatmap showing spatial and temporal variation]
BSMs Mr change: Effective Long Term Stiffness

Equivalent Stiffness (Mpa)

Years

0 1 2 3 4 5 6 7 8 9 10

1% cem CTSB
1% cem G5SB

Closure
Economical BSMs

Lower BC
Improve QC
Reduce variability
Operator training
Mix Design upgrades
Structural Design upgrades

“Gadgets”
Data management
Skills requirement
Prolific n° variables
Difficult to simplify
Closing loop is a longitudinal study

Thank you!