Best Practices for Crack Treatments for Asphalt Pavements NCHRP Report 784

Dale S. Decker, P.E. Eagle, Colorado www.dsdecker.com

Cracking in Asphalt Pavements

- First Asphalt Road in U.S. ~ 1828
- First Observance of Cracking ~ 1830*

* Undocumented!

Objective of Crack Treatments

- Minimize intrusion of water into underlying layers of pavement structure
- Efforts are major element of every maintenance engineer's work

Crack Treatment Definitions

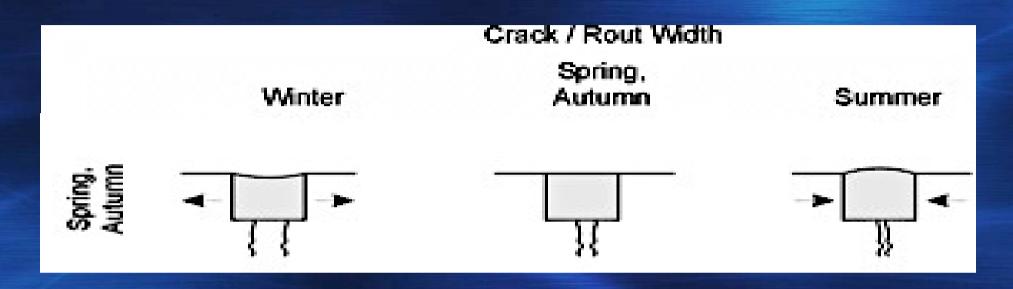
- "Working" crack
 - A crack that is moving as a result of contraction and expansion during seasonal changes
 - May be challenging to identify
 - 1/8" (3mm) is generally accepted as classification criterion

Crack Treatment Definitions

- Crack Sealing
 - Used for "working" cracks > 1/8" (3mm)
 - Materials placed into cracks in order to prevent intrusion of water and incompressibles into cracks
 - Commonly used as a transverse crack treatment

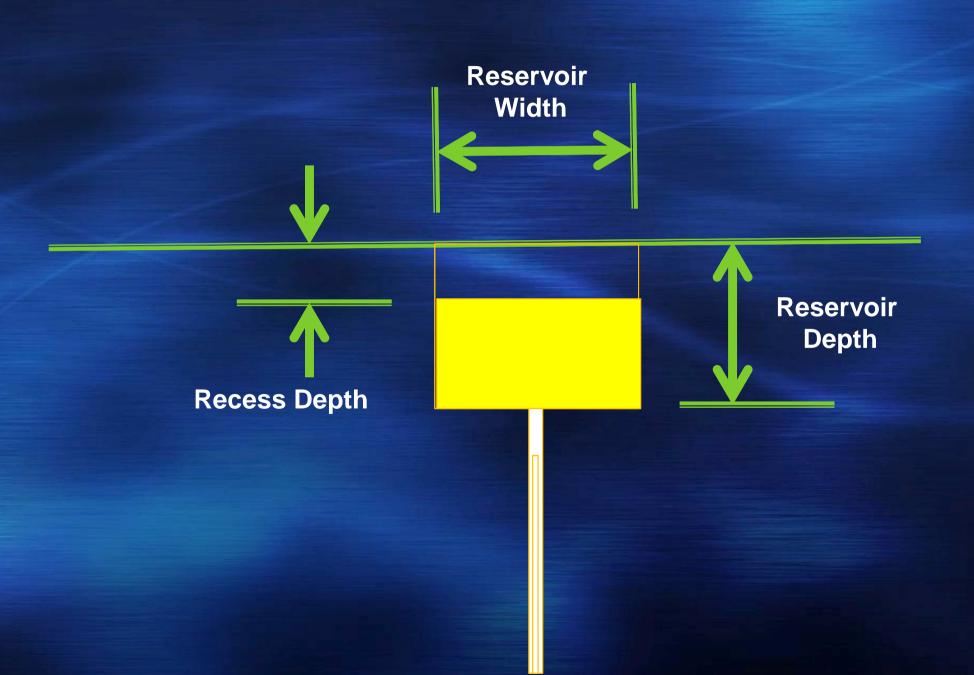
Crack Treatment Definitions

- Crack Filling
 - Placement of materials into "non-working" cracks to substantially reduce water infiltration and reinforced adjacent cracks
 - Commonly used as a longitudinal crack treatment and/or in temperate climates


Potential Cracking Conditions

BEST PRACTICES FOR CRACK TREATMENTS

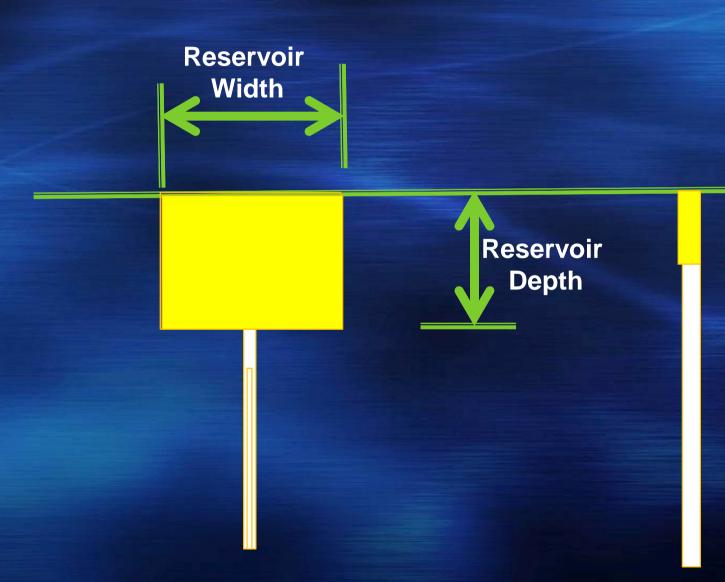
Seasonal Impacts

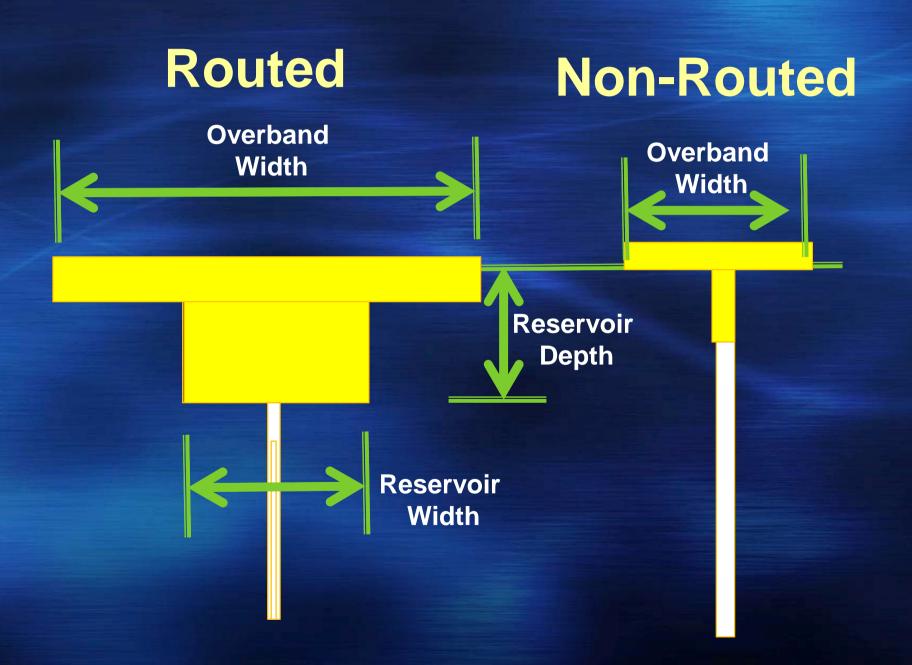


- Spring/Autumn Treatment
 - Crack is at "middle" size
 - Less deformation of sealant during cold and hot temperatures

Crack Treatment Geometry

- Recessed with Routed Crack
- Flush Fill with Routed Crack
- Flush Fill with Non-Routed Crack
- Overband with Routed Crack
- Overband with Non-Routed Crack


Recessed Geometry


Flush Fill Geometry

Routed

Non-Routed

Overband Geometry

Crack Treatment Materials

- Crack sealing costs:
 - Labor 66%
 - Equipment 22%
 - Materials 12%

"More cost effective to use a product that will last longer, even if it is more expensive"

Nebraska Department of Roads

Project Design

- Evaluate existing conditions
 - "Working" or not; type, density, climate
- Past, present and future rehabilitation activities are understood
- Right preparation of crack for treatment
- Right techniques to install sealant
- Proper selection of sealant product

Crack Treatment BP

- Block
- Longitudinal
- Reflective
- Transverse

Treatment not usually successful for fatigue cracks and is not recommended.

Project Selection

- Crack sealing not appropriate
 - Cracks are too wide, too deep or too numerous
 - Non-working cracks (filler is cheaper and quicker)
 - Deterioration too severe (fatigue)
 - Rehab scheduled within 2 years
 - Sealing would cover >25% of area

Project Selection

- Crack filling not appropriate
 - >1/8" (3mm) per year movement
 - Deterioration too severe
 - CIR scheduled in near future
 - Reconstruction scheduled within 2-3 years

Preparation for Crack Treatment

- Routing to establish geometry
- Compressed air to clean
- Hot compressed air lance to remove dust and moisture
- Backer rod if necessary

- Climatic Conditions
 - 40-70°F (4-20C)
 - Low humidity
 - No precipitation
 - Low wind

- Crack treatment prior to overlay
 - Primary overlay issue is time
 - Complete crack treatment 1-3 years prior to overlay
 - For same-season overlay, use recessed configuration
 - Generally no changes made to crack treatment operations

- Crack treatment prior to surface treatment
 - Primary issue is time
 - Generally no changes made to crack treatment operations
 - Crack treatment should be done one season before surface treatment
 - For same season, at least one month between operations
 - More time is better

- Crack treatment prior to surface treatment
 - Procedures do not vary by planned surface treatment type
 - Do not rout if microsurfacing is planned
 - Determine compatibility of crack sealant with surface treatment
 - Do not perform HIR over crack sealant

- Crack Configurations
 - Recessed/Routed
 - Used when overlay is to be placed
 - Minimizes potential for a bump
 - 3/8" (9mm) recess is common
 - Place sealant 6-12 months prior to overlay
 - Not used commonly (35%)

- Crack Configurations
 - Flush Fill
 - Widely used (50%)
 - Routed or Non-Routed
 - Used when surface treatment is to be applied
 - Non-Routed used for crack filling
 - Squeegeed surface common

- Crack Configurations
 - Overband
 - Traffic soon after placement on low volume roadways
 - Traffic can track
 - Not used if overlay planned
 - Either squeegeed or left as cap
 - No more than 3" (75mm) wide

Overbanding

Excessive Overbanding

Routing Recommendations

- Do Not Rout:
 - Crack opening < 1/8" (3mm)</p>
 - Fatigue cracks
 - Crack density is high (< 30' (9m)apart)</p>
 - Overall pavement thickness < 2"</p>
 - Pavement condition is poor
 - Pavements being considered for rehabilitation

Routing Recommendations

- Touch both sides of crack (1/8") (3mm)
- Minimum Width of cut: 1/2" (12mm)
- Maximum Width of cut: 1-1/2" (25-38mm)
- No spalling of cut face
- Use backer rod if deep crack
 - Sealant too deep, potential for cohesive failure is high

Crack Cleaning

- Crack must be clean and dry prior to sealant application
- Power sweeper or vacuum cleaner

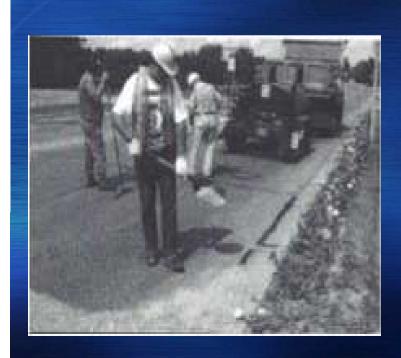
Crack Cleaning

Compressed Air

Vacuum

Crack Drying

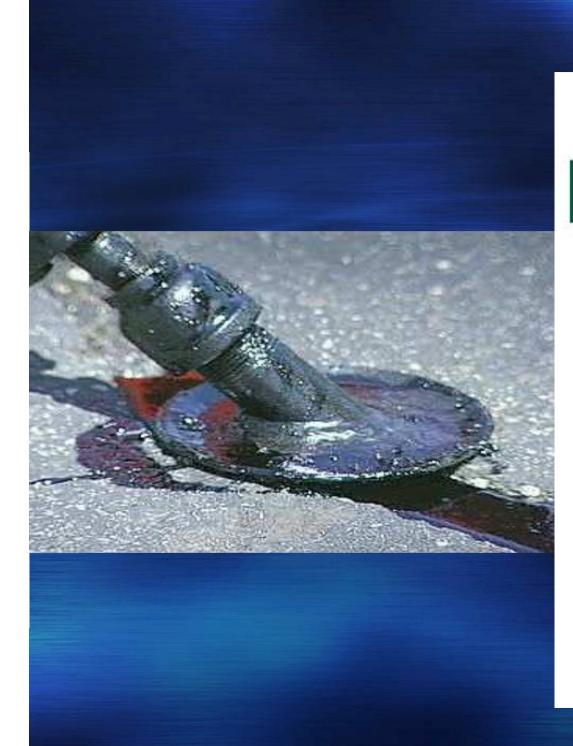
- Hot air lance used to dry crack
- Also warms surface to enhance bonding
- DO NOT OVERHEAT THE MIX



Don't Burn the Crack

- Anti-tracking approaches (Blotter)
 - Blotter sand
 - Release agent
 - Plastic/paper

Most don't use blotter



Closure

Goal of crack treatments is to achieve a pavement maintenance application that will perform well

- "Use the right materials at the right time for the right conditions"
 - Jim Sorenson

- Have the right people with the right training
 - Dale Decker

NCHRP REPORT 784

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Best Practices for Crack Treatments for Asphalt Pavements

TRANSPORTATION RESEARCH BOARD
OF THE NATIONAL ACCIDENCE.

